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a b s t r a c t

This paper reviews a class of multifractal models obtained via products of exponential
Ornstein–Uhlenbeck processes driven by Lévy motion. Given a self-decomposable distri-
bution, conditions for constructing multifractal scenarios and general formulas for their
Renyi functions are provided. Together with several examples, a model with multifractal
activity time is discussed and an application to exchange data is presented.
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1. Introduction

Since Mandelbrot (in particular Refs. [1–3]) developed and popularized the concept of fractals and multifractals, and
advocated their use in the explanation of observed features of time series arising in natural sciences, there has been ongoing
interest by researchers in a variety of disciplines in widening their application.

Models withmultifractal scaling have been used in many applications in hydrodynamic turbulence, genomics, computer
network traffic, commodity prices, financialmarkets etc., an arbitrary selection of papers and the references therein towhich
the interested reader is referred are those of Refs. [4–9,3,10–16].
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In this paper we are going to discuss a class of multifractal models originally introduced by Anh et al. [17] and show they
provide a useful and flexible family ofmodels for applications.Wewill do so by analyzing some foreign exchange rates series.
Evidence of multifractal feaures in this area is well documented, see, for example, Refs. [18–21] and the references therein.
The aim here is not that of discovering againmultifractality in the data, but rather to discuss and present a variety of models
with multifractality which can be easily adapted to the most varied settings. As we will see, one of the relevant practical
features of these models is the easy derivation of scaling properties of the model from basic quantities of the underlying
processes.

We will give a short description of the main features of fractals and multifractals in the next section. Section 3 discusses
the construction of a multifractal process based on the products of geometric Ornstein–Uhlenbeck (OU) processes and
provides several examples. Section 4 discusses the fitting of the models to real financial data.

2. Multifractals

There are twomainmodels for fractals that occur in nature. Generally speaking, fractals are either statistically self-similar
or they are multifractals.

The definition of a multifractal is motivated by that of a stochastic process Xt which satisfies a relationship of the form

{X(ct)} d
={M(c)X(t)}, t ≥ 0 (2.1)

for positive 0 < c < 1, where M is a random variable independent of X and equality is in finite-dimensional distributions.
In the special case M(c) = cH , the multifractal reduces to a self-similar fractal where the parameter 0 < H < 1 is known
as the Hurst parameter, named after the British engineer Harold Hurst (whose work on Nile river data played an important
role in the development of self-similar processes). For a more detailed review of self-similar processes, see Ref. [22]. The
actual definition of a multifractal process, as given in Ref. [3], is defined in terms of themoments of the process and includes
processes satisfying (2.1).

A stochastic process X(t) ismultifractal if it has stationary increments and there exist functions c(q) and τ(q) and positive
constants Q and T such that ∀qϵQ = [q−, q+],∀tϵ[0, T ],

E(|X(t)|q) = c(q)tτ(q)+1, (2.2)
where τ(q) and c(q) are both deterministic functions of q. τ(q) is called the scaling function and takes into account the
influence of the time t on the moments q, and c(q) is called the prefactor. While this definition is the standard definition
of a multifractal process, most processes studied as multifractals only obey it for particular values of t , or sometimes for
asymptotically small t . The condition of stationary increments is also quite often relaxed. Conversely, Taqqu et al. [23] tests
the scaling properties of the increments of X(t) instead of the process itself. If this method is used then the subtraction of
the mean E(X(t + 1) − X(t)) to X(t + 1) − X(t)may be required to ensure a fair investigation, because such a stationary
process cannot be self-similar or even asymptotically self-similar if it has non-zero mean. For our case, we will find that
E(X(t + 1)− X(t)) = 0 for each of our data sets. It follows from (2.2) that

log E(|X(t)|q) = log c(q)+ (τ (q)+ 1) log t (2.3)
and so X(t) is multifractal if for each q ∈ Q , log E|X(t)|q scales linearly with log t and the slope is τ(q) + 1. To explain the
notion of the scaling function τ(q), consider the particular case of the fractional Brownian motion, a self-similar process. A
fractional Brownianmotion, with aHurst exponentH , satisfies X(t) d

= tHX(1), which implies that E(|X(t)|q) d
= tHqE(|X(1)|q).

Here we obtain the prefactor c(q) = E(|X(1)|q), and the scaling function τ(q) = Hq − 1. So the scaling function is linear if
the process is self-similar. Alternatively, the process ismultifractal if it hasmultiscaling properties that imply nonlinearity of
the scaling function. Mandelbrot et al. [3] showed that the scaling function is concave for all multifractals with the following
argument. Let ω1, ω2 be positive weights with ω1 + ω2 = 1 and let 0 ≤ q1, q2 ≤ q+ and q = q1ω1 + q2ω2. Then by Hölder
inequality

E|X(t)|q ≤ (E|X(t)|q1)ω1(E|X(t)|q2)ω2 (2.4)
and so

log c(q)+ τ(q) log t ≤ (ω1τ(q1)+ ω2τ(q2)) log t + (ω1 log c(q1)+ ω2 log c(q2)). (2.5)
Letting t go to zero we have τ(q) ≥ ω1τ(q1)+ ω2τ(q2) and so τ is concave. If T = ∞ we can let t go to ∞ and we get the
reverse inequality τ(q) ≤ ω1τ(q1) + ω2τ(q2). It follows that T = ∞ implies that τ is linear and so X(t) is self-similar. An
important associated concept is the multifractal spectrum. It is the Legendre transform of the scaling function τ(q) and is
given by

f (α) = inf
q

[qα − τ(q)], (2.6)

where it is defined. For self-similar processes it is only defined at H with f (H) = 1. The multifractal spectrum plays an
important role in multifractal measures, where it represents the fractal dimensions of sets where the measure has certain
limiting intensities. The analogous definition for multifractal processes is the dimension of sets with local Hölder exponent
α (see Ref. [24] for details).
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