
Physica A 392 (2013) 123–135

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Stochastic thermodynamics across scales: Emergent
inter-attractoral discrete Markov jump process and its
underlying continuous diffusion
Moisés Santillán a,∗, Hong Qian b

a Centro de Investigación y Estudios Avanzados del IPN, Unidad Monterrey, Parque de Investigación e Innovación Tecnológica, 66600 Apodaca NL, Mexico
b Department of Applied Mathematics, University of Washington, Box 352420, Seattle, WA 98195, USA

a r t i c l e i n f o

Article history:
Received 17 May 2012
Received in revised form 30 July 2012
Available online 3 September 2012

Keywords:
Irreversible thermodynamics
Markov process
Cross graining

a b s t r a c t

We investigate the internal consistency of a recently developed mathematical thermody-
namic structure across scales, between a continuous stochastic nonlinear dynamical sys-
tem, i.e., a diffusion process with Langevin and Fokker–Planck equations, and its emergent
discrete, inter-attractoral Markov jump process. We analyze how the system’s thermody-
namic state functions, e.g. free energy F , entropy S, entropy production ep, free energy dis-
sipation Ḟ , etc., are related when the continuous system is described with coarse-grained
discrete variables. It is shown that the thermodynamics derived from the underlying, de-
tailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs
and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only
takes amiddle road and startswith the natural discrete description,with the corresponding
transition rates empirically determined. By natural we mean in the thermodynamic limit
of a large system, with an inherent separation of time scales between inter- and intra-
attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the
theory of Kramers, by incorporating thermodynamics: while a mechanical description of a
molecule is in terms of continuous bond lengths and angles, chemical reactions are phe-
nomenologically described by a discrete representation, in terms of exponential rate laws
and a stochastic thermodynamics.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A quite complete mathematical thermodynamic structure for general stochastic processes has been described recently
for both discrete Markov jump processes and continuous Langevin–Fokker–Planck systems [1–9]. In this formalism, the
entropy production rate ep of a Markov dynamics can be mathematically decomposed into two non-negative terms: free
energy dissipation rate −Ḟ , corresponding to Boltzmann’s original theory on irreversibility of spontaneous change, and
house-keeping heat Qhk, corresponding to the Brussels school’s notion of irreversibility including nonequilibrium steady
states (NESS) [10–14].1

In almost all applications of stochastic dynamic theories in physics, chemistry and biology, there are multiple time scales
often with a significant separation of their magnitudes. Furthermore, when a dynamical system is highly nonlinear, with
interactions including strong feedback, multistability with multiple attractors is often the rule rather than an exception.
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1 This is an interpretation of themathematical equation ep = −Ḟ +Qhk based on a traditional view of thermodynamics. A new view advocated in Ref. [3],
noting that both Qhk and ep are non-negative, is to interpret Ḟ = Qhk − ep as a balance equation for free energy F ; i.e., the First Law of an open system, with
Qhk and ep being a source and a sink.
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Visualizing such a complex systemnaturally leads to the notion of a landscape,which has become a highly popularmetaphor
as well as a useful analytical device [15–19]. When stochastic nonlinear dynamical systems of populations of individuals
become large, a time scale separation between inter- and intra-attractoral dynamics becomes almost obligatory. In cellular
biology, they have been called respectively biochemical network and cellular evolution time scales [20].

In chemistry, recognizing a separation of time scales has led to the fundamental understanding of chemical reactions in
terms of discrete states of molecules, in addition to the full mechanical description of constitutive atoms in terms of bond
lengths and bond angles. In fact, one of the most significant, novel, chemical concepts is that of a transition state which, in
terms of the modern nonlinear dynamical systems language, is the saddle point on a separatrix that divides two basins of
attraction [21,22]. Recall also that in the application of Gibbs’ formalism of statistical mechanics to chemical equilibrium,
the conditional free energy plays a central role [23,24]. One usually does not work with the pure mechanical energy of a
system; rather, one works with a conditional free energy from a coarse-grained representation and develops a partition
function thereafter. An essential notion in this approach is the consistency across scales. We shall expand on these ideas
more precisely in the following section.

In the present work we address the question of whether the mathematical thermodynamic structure of a given
continuous stochastic nonlinear dynamical system is consistent with the mathematical thermodynamics associated with
the emergent discrete Markov jump process. In other words: whether the formal mathematical relations between state
functions and process variables remain unchanged when the system is viewed at either a finer- or a coarse-grained scale.

It is important to point out, at the onset, that the state of a stochastic dynamical system has always had two distinctly
different meanings: (a) a state of a single, stochastically fluctuating, system; and (b) a state in terms of the distribution over
an ensemble. Similarly, in more precise mathematical terms, a state function can be (a) a function of a stochastic process,
or (b) a functional of the solution to a Fokker–Planck equation. The deep insight from the theory of probability is that these
are two complementary, yet mathematically identical, descriptions of the same stochastic process. With this distinction in
mind, entropy and free energies are state functionals of the second type, while energy is a state function of the first type. A
state function of the first type naturally has fluctuations. Most classical thermodynamic functions, on the other hand, are of
the second type.

It is also important to point out that the present analysis starts with the assumption of Markovian dynamics with
both continuous and discrete states. We wish to investigate the internal logic of stochastic thermodynamics. All the
thermodynamic quantities that appear in the present work, though motivated by physics and using the same names, are
mathematically defined quantities based on the stochastic dynamics alone. In particular, our analysis differs from the recent
coarse-graining thermodynamic analysis based on a conventional approach [2,9]which reveals a hidden entropy production.
An explicit assumption of our mathematical formalism is that one cannot measure entropy production without sufficient
time resolution to recognize time irreversibility.2

2. Equilibrium statistical thermodynamic consistency across scales

In equilibrium statisticalmechanics, the concept of consistency, or invariance, has a fundamental importance in the study
of realistic physical systems at an appropriate scale [23,24]. In a continuous system, the conditional free energy is known
as the potential of mean force [26]. The conditional free energy can do work just as the Newtonian mechanical energy; the
concept of entropic force is well understood in physical chemistry [27].

For an investigator working on a certain level of description, with discrete states (i = 1, 2, . . .) and conditional free
energy (Ai), the canonical partition function of the statistical thermodynamic system is [23,24,27]:

Z(T ) =


i=1

e−Ai/kBT . (1)

Note that, since Ai is a conditional free energy, it can be decomposed into Ai = Ei − TSi, where Ei = ∂(Ai/T )/∂(1/T ) and
Si = −∂Ai/∂T . In general, both Ei and Si are themselves functions of the temperature.

Now, for another investigator who works at a much more refined level, with a continuous variable x, each state i
corresponds to a unique region of the phase space ωi, with ωi


ωj = ∅ for i ≠ j, and


i=1 ωi = � covering the entire

phase–space region available to the system. Let V (x) (x ∈ �) be the potential of mean force at this level. Then, the canonical
partition function for this observer is

Z(T ) =


�

dxe−V (x)/kBT . (2)

We see that Z(T ) andZ(T ) are equal if the Ai in Eq. (1) are such that

Ai(T ) = −kBT ln


ωi

dxe−V (x)/kBT


. (3)

2 In Ref. [25], it was attempted to introduce entropy as a function of the first type with Υt = − ln f sX (Xt ) where Xt is a diffusion process, and f sX (x) is the
stationary solution to the corresponding Fokker–Planck equation. One sees that entropy really is a population-based concept: it requires f sX (x). For diffusion
processes with detailed balance, since f sX (x) ∝ e−φ(x) where φ(x) is potential energy, then fluctuating Υt and fluctuating energy φ(Xt ) are the same.
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