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a b s t r a c t

A theoretical approach, based on exact calculations of configurations on finite rectangular
cells, is applied to study the percolation of homonuclear dimers on square lattices. An
efficient algorithm allows us to calculate the detailed structure of the configuration space
for M = Lx × Ly cells, with M varying from 16 to 36. The percolation process has been
monitored by following the percolation function, defined as the ratio between the number
of percolating configurations and the total number of available configurations for a given
cell size and concentration of occupied sites. The percolation threshold has been calculated
by means of two complementary methods: one based on well-known renormalization
techniques and the other based on determining the inflection point of the percolation
function curves. A comparison of the results obtained by these two methods has been
performed. The study includes the use of finite-size scaling theory to extrapolate numerical
results towards the thermodynamic limit. The effect of jamming due to dimers is also
established. Finally, the critical exponents ν, β and γ have been obtained and values
comparedwith numerical results and expected theoretical estimations. The present results
show agreement and even improvement (in the case of γ ) with respect to some numeric
values available in the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The percolation problem is a topic being increasingly considered in statistical physics. One reason for this current interest
is that it is clear that generalizations of the pure percolation problem are likely to have extensive applications in science
and technology [1–5]. Although it is a purely geometric phenomenon, the phase transition involved in the process can be
described in terms of a usual continuous phase transition. This mapping to critical phenomena has made percolation a full
part of the theoretical framework of collective phenomena and statistical physics.

In this context, percolation of monomers (particles occupying one lattice site each) has been one of the most studied
models in the literature, and the corresponding percolation threshold pc has been measured to high precision for decades
[6–10]. The problem becomes considerably difficult when some sort of correlation exists, such as particles that occupy
several k contiguous lattice sites (k-mers). Consequently, there have been fewer studies devoted to the problem of
percolation of structured objects. Among them, Leroyer and Pommiers [11] studied the percolation behavior of a random
sequential adsorption (RSA) of linear segments with different sizes, and Gao and Yang [12] and Cherkasova et al. [13]
analyzed the percolation of dimers. In all cases, the dependence of the percolation threshold on the parameters of the
problem and the universality of the phase transition have been discussed. However, Ref. [11] is limited due to finite-size
effects, while Refs. [12,13] are just restricted to the case k = 2 (dimers). In fact, Leroyer and Pommiers found that, as the
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Fig. 1. (a) Snapshot corresponding to one of the possible configurations for a system of four dimers on a 4×4 cell. Full circles and empty squares represent
dimer units and empty sites, respectively. (b) As part (a) for a system of eightmonomers on a 4×4 cell. Full circles and empty squares representmonomers
and empty sites, respectively.

segment length grows, the percolation threshold decreases, goes through a minimum, and then increases slowly for large
segments. Further studies by Cornette et al. [14] showed a monotonic dependence of the percolation threshold on the size
of the deposited element, in contrast with the results of Ref. [11]. This discrepancy was explained because of the finite-size
effect not being considered in Ref. [11].

As discussed in the previous paragraph, it took until 2003 to elucidate the dependence of pc on k for tortuous and rigid
k-mers deposited according to an RSA process. In addition, the phase transition predicted by Monte Carlo (MC) techniques
in Refs. [11–14] has not been corroborated yet by analytical methods. In this framework, the main objective of the present
work is, using an analytical technique, to determine the full set of characteristic parameters of percolation (percolation
threshold and critical exponents) for a system of dimers, randomly and irreversibly deposited on a square lattice.1 Wemake
use of the opportunity of considering the effect of jamming on the coverage of square lattices upon using dimers. The study
is based on (i) exact calculation of configurations on finite M = Lx × Ly cells, with M varying from 16 to 36 and (ii) the use
of finite-size scaling techniques [15–17].

The rest of the paper is organized as follows. In Section 2, the theoretical formalism is presented. The analysis of the
results and discussion are given in Section 3. Finally, the conclusions are drawn in Section 4.

2. Theory

In the filling process, rigid dimers are deposited sequentially and irreversibly on an initially empty square cell of
M = Lx × Ly sites with the following restrictions: (1) the depositing objects contain two identical units; (2) the distance
between dimer units is assumed in registrywith the lattice constant a; hence exactly two sites are occupied by a dimerwhen
deposited; (3) the incoming particles must not overlap with previously added objects; and (4) the elements remain frozen
in the lattice. In any case, the procedure is iterated untilN dimers are placed on the cell and the desired concentration (given
by p = 2N/M) is reached. A configuration is a distribution of empty and occupied sites on the cell. Fig. 1(a) shows one of
the possible configurations corresponding to a system of four dimers on a 4 × 4 cell. In part (b), one possible configuration
of monomers at the same concentration as that in part (a) is plotted. Note that the configuration in part (b) is not available
for dimers. Thus, not all the available configurations of empty and occupied sites can be reached by dimer deposition.

A central idea of percolation theory is based on finding the minimum concentration p for which a cluster (a group of
occupied sites in such a way that each site has at least one occupied nearest-neighbor site) extends from one side of the
system to the opposite one. This particular value of the concentration rate is named the critical concentration or percolation
threshold pc , and it determines a phase transition in the system. In themonomeric randompercolationmodel, any single site
(or a bond connecting two sites) is occupied with probability p. For the precise value of pc , the percolation threshold of sites
(bonds), at least one spanning cluster connects the opposite borders of the system (indeed, there exists a finite probability of
finding n (> 1) spanning clusters [18–21]). In that case, a continuous phase transition appears at pc which is characterized
by well-defined critical exponents.

Let us define p(t) as the fraction of lattice sites covered at time t by the deposited objects. Due to the blocking of the
lattice by the already randomly adsorbed elements, the limiting or jamming coverage, pj = p(t → ∞), is less than that
corresponding to close packing (pj < 1). Consequently, p ranges from 0 to pj for objects occupying more than one site. An
extensive overview of this field can be found in the excellent work by Evans [22] and the references therein. In the case of

1 The dimer is the simplest case of a polyatomic adsorbate, and it contains all the properties of multisite-occupancy adsorption.
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