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a b s t r a c t

The complicated nature of materials often necessitates a statistical approach to under-
standing and predicting their underlying physics. One such example is the empirical
Weibull distribution used to describe the fracture statistics of brittlematerials such as glass
and ceramics. TheWeibull distribution adopts the samemathematical form as proposed by
Kohlrausch for stretched exponential relaxation. Although it was also originally proposed
as a strictly empirical expression, stretched exponential decay has more recently been de-
rived from the Phillips diffusion-trap model, which links the dimensionless stretching ex-
ponent to the topology of excitations in a glassy network. In this paperwepropose an analo-
gous explanation as a physical basis for theWeibull distribution, with an ensemble of flaws
in the brittle material serving as a substitute for the traps in the Phillips model. One key
difference between stretched exponential relaxation and Weibull fracture statistics is the
effective dimensionality of the system.We argue that the stochastic description of the flaw
space in the Weibull distribution results in a negative dimensionality, which explains the
difference inmagnitude of the dimensionlessWeibull modulus compared to the stretching
relaxation exponent.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Materials science encompasses a broad range of chemistry and physics. The complicated multi-body interactions in
condensed matter systems often require a statistical approach for predicting and understanding their physical properties.
Even deterministic processes such as brittle fracture are often best represented using a probabilistic interpretation, since
the particular distribution of flaws in a given sample is generally stochastic in nature. Assuming a single type of dominant
flaw population, the probability of fracture of a brittle material such as glass is well described by the empirical Weibull
distribution [1]:

F(σ ) = 1 − exp

−

(σ − σmin)
m

σ0


, (1)

where F(σ ) is the probability of failure under a tensile stress σ , σ0 is the characteristic strength, σmin is the minimum
strength (below which no failure will occur), and the dimensionless exponent m is known as the Weibull modulus. The
Weibull distributionwas proposedwithout any theoretical basis for its economyof parameters and hasmetwith remarkable
success in describing the failure statistics of brittle materials such as glass and ceramics [2].

Interestingly, the functional form adopted by Weibull for his distribution is identical to that proposed more than a
century prior by Kohlrausch to describe nonexponential relaxation behavior [3]. As a nonequilibrium material, a glass
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Fig. 1. Failure probability as a function of applied stress for soda lime silicate versus CorningGorilla R⃝ glass [8]. The slopes of the straight-line fits correspond
to the Weibull moduli for these glasses, where a steeper slope (i.e., greater Weibull modulus) is indicative of less variability in the strength of the glass.

is continuously relaxing toward its equilibrium supercooled liquid state [4–6], which is captured by the nonexponential
relaxation function [3]:

f (t) = exp


−


t
τ

β


. (2)

This is the so-called ‘‘stretched exponential’’ relaxation function, f (t), which decays from an initial value of f (0) = 1 to
f (∞) = 0 in the limit of long time t . The parameter τ is the characteristic relaxation time for the decay, and the exponent β
in this case is known as the ‘‘stretching exponent’’. As with the Weibull distribution, the Kohlrausch function was proposed
empirically for its economy of parameters and notable success in fitting experimental data [7].

Of particular interest in both Weibull fracture statistics and stretched exponential relaxation is the value of the
dimensionless exponent, m or β , respectively. In the former case, a higher value of the Weibull modulus m is generally
desirable since it is indicative of less spread in the observed strength of a material (see Fig. 1, for example). A larger value of
m is indicative of greater predictability and hence greater reliability. In the ideal case of a perfectly uniform flaw population,
theWeibull modulus would approach its theoretical upper limit ofm → ∞. In practice, typical values ofm are on the order
of 5–50 [2].

In the latter case of stretched exponential relaxation, the dimensionless stretching exponent satisfies 0 < β ≤ 1,
where the upper limit of unity corresponds to simple exponential relaxation. While traditionally left as an empirical fitting
parameter, the diffusion-trap theory of Phillips [7] has shown that the value of β for homogeneous glassy systems can be
derived from purely topological considerations. Based on these topological arguments, the Phillips theory predicts certain
universal values of β , most notably β = 3/5 for systems dominated by short-range forces and β = 3/7 for those dominated
by long-range relaxation pathways. This bifurcation of the stretching exponent has recently been confirmed in a decisive
experiment by Potuzak et al. [9]

In this paper, we consider the common physics underlying both Weibull fracture statistics and stretched exponential
relaxation. We propose that Weibull fracture statistics can be viewed in a fashion analogous to stretched exponential
relaxation according to the Phillips diffusion-trap model. In this view, the Weibull distribution can be interpreted as an
analog to stretched exponential relaxation in an ensemble-strength space. These common underlying physics point to the
topological nature of fracture statistics, where the ideal upper limit of the Weibull modulus (m → ∞) is obtained for a
negative dimensionality of the iso-stress space equal to d = −2.We argue that the negative dimensionality of the iso-stress
space is a direct result of the stochastic nature of the flaw distribution, with the fracture of each sample being governed by
its single most severe flaw.

2. Stretched exponential relaxation

A comprehensive physical understanding of the relaxation behavior of glass is of vital importance for high-tech
applications, including optical fiber [10] and substrate glass for liquid crystal displays [11–13]. Relaxation behavior is also an
important consideration for chemically strengthened cover glass for personal electronic devices [14,15]. Glass relaxation is
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