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a b s t r a c t

Themajor factor that drives a protein toward collapse and folding is the hydrophobic effect.
At the folding process a hydrophobic core is shielded by the solvent-accessible surface area
of the protein. We study the fractal behavior of 5526 protein structures present in the
Brookhaven Protein Data Bank. Power laws of proteinmass, volume and solvent-accessible
surface area aremeasured independently. The present findings indicate that self-organized
criticality is an alternative explanation for the protein folding. Alsowe note that the protein
packing is an independent and constant value because the self-similar behavior of the
volumes and protein masses have the same fractal dimension. This power law guarantees
that a protein is a complex system. From the analyzed data, q-Gaussian distributions seem
to fit well this class of systems.

© 2011 Elsevier B.V. All rights reserved.

Proteins are involved directly or indirectly in all biological processes, and their functions range from catalysis of chemical
reactions to themaintenance of the chemical potentials across cell membranes. They are synthesized on ribosomes as linear
chains of amino acids in a specific order from information encoded within the cellular DNA. To function, it is necessary
for these chains to fold into the unique native three-dimensional structure characteristic of each protein. This involves a
complex molecular recognition phenomenon that depends on the cooperative action of many nonbonded interactions. As
the number of possible conformations for a polypeptide chain is astronomically large, a systematic search to find the native
(lowest energy) structure would require an almost infinite length of time, the so-called ‘‘Levinthal paradox’’ [1].

Protein folding is driven by hydrophobic forces [2]. It is well known that the native fold determines the packing
but packing does not determine the native fold [3]. This view is corroborated by the widespread occurrence of protein
families whose members assume the same fold without having a sequence similarity. However, there are a large number
of ways in which the internal residues can pack together efficiently. Recently, some aspects of biological molecules were
obtained by their fractal behavior. Thus, self-similarity were uncovered in, e.g., multifractality in the energy hyper-surface
of the proteins and a possible alternative explanation of the Levinthal paradox [4], degree of compactness of the proteins
[5–7], loss of the accessible surface area of amino acids and hydrophobicity scale [8], among others. Furthermore, the fractal
methods corroborate to identify different states of the same system according to its different scaling behaviors, e.g., the
fractal dimension is different for structures with (without) hydrogen bonds [4,9], or different long-range correlations in
a liquid–vapor-phase transition of the solvent [10]. Then, the correct interpretation of the scaling results obtained by the
fractal analysis is crucial for understanding the intrinsic geometry of the systems under study.

In this paper we are mainly interested in investigating the geometric characteristics of 5526 different protein chains
deposited in the Brookhaven Protein Data Bank. Our strategy is to compare the fractal dimensions of solvent-accessible
surface area, volume and mass of each protein chain. Here we show that solvent-accessible surface area scales with mass.
This area scales with number of amino acids [11] with the same nontrivial exponent.

The behavior of the volume and solvent-accessible surface area are distinct. While the fractal dimensions of mass and
volume are equal (δM = δV = 2.47) the dimension of the solvent-accessible surface area is δArea = 2.26 ± 0.09 [11].
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Fig. 1. The solvent-accessible solvent area as function of protein chain mass. We recall that the correlation coefficient of Pearson R = 0.99 and F statistic
value ≈106000 to the fitting (black line) and the power law follows γ = 0.87 ± 0.00.

Therefore, the atoms that compose the protein are distributed in the macromolecule volume as a fractal object. In this
context, the interactions among these atoms aremade among themost different scales of the object, like a randomly packed
spheres in percolation threshold [7] for volume [5] and duemass-size exponent [12] for themass among different scales [6].
On the other hand, amino acids over the solvent-accessible surface area behave on average as irreversibly crushedwires [11].

The average packing density has been studied in different approaches. Voronoi tessellation methods were the first
approach to analyze protein packing and they have been widely used for examining packing, volume and surface area
[13–15]. By using the Voronoi tessellation method the mean interior packing density is 0.74 (van der Waals volume per
total volume). Another interesting approach to evaluate the packing of residues is based on a coarse-grained scale. In this
method a Monte Carlo algorithm is utilized for superimposing residue clusters collected from known protein structures.
A residue cluster is composed of a central residue, and the set of all neighboring residues located within a first coordinate
shell. A constant radius is used for defining the first coordinate volume [16]. From this approach it is possible to approximate
two-thirds of the protein packing as an fcc geometry on a coarse-grained scale. The remaining one-third refer to residues
which are more loosely or randomly packed.

Different models about protein packing were proposed, like the fcc presented above. Some of them are very instigating.
The first model proposed protein packing as crystalline structures [13], other one proposed that these structures behave like
liquid systems [14] and another suggested that they are like plastic structures [15]. Some different characteristics of proteins
can be explained by each one of these models. Thus, the packing of the interior of proteins behaves like a solid structure,
because their mean interior packing density (ρ = 0.74) is close to the one obtained from crystalline structures. On the other
hand, the tertiary structure can be lost if we change a single amino acid, e.g., if we change one alanine to one proline inside
the α-helix structure, this secondary structure must be missing. Plastic is an intermediate model between solid and liquid
ones.

Recently, some models of packing have been proposed. Thus, replacing spheres with less symmetric objects (such as
rods or ellipsoids) introduces new degrees of freedom that alter the packing structure and create new modes of response
[17–20]. The density of jammed disordered packing using ellipsoids suggests that the higher density was directly related
to the higher number of degrees of freedom per particle and thus the larger number of particle contacts required to
mechanically stabilize the packing. Refs. [19,21] observed that the number of contacts per particle Z ≈ 10 for spheroids, as
compared to Z ≈ 6 for spheres.

Fig. 1 depicts the behavior of solvent-accessible surface area as function of protein mass. The scaling exponent γ =

0.87± 0.00. We recall that the same scaling exponent is obtained for solvent-accessible surface area as function of volume,
as follows.

A ∝ Mγ
∝ V γ (1)

where A is the solvent-accessible surface area,M the protein chain mass and V the volume chain mass.
The power law, presented in Eq. (1), is far from the value obtained by Euclidian objects. Thus, the present result strongly

indicates that the generation of proteins occurs in scale invariant media, as observed from the Fig. 1. In this sense, amino
acids over the solvent-accessible surface area behave on average as irreversibly crushed wires [11]. On the other hand, the
packing of amino acids over the surface depend on amino acids distributed inside the protein volume.

Recently, a simple mean field model [11] was proposed. In this context, energy can be stated as E = Eel + Esa,
where Eel ∝ Rn is the elastic energy, R is the radius of gyration of the protein configuration, n is a scaling exponent and
Esa ∝ M2

× R−3 is a self-avoidance energy [11]. From the elastic scaling exponent we observe that the solvent-accessible
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