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a b s t r a c t

By using the discrete Markov chain method, Parrondo’s paradox is studied by means of
theoretical analysis and computer simulation, built on the case of game AB played in
alternation with modulus M = 4. We find that such a case does not have a definite
stationary probability distribution and that payoffs of the game depend on the parity
of the initial capital. Besides, this paper reveals the phenomenon that ‘‘processing in
order produces non-deterministic results, while a random process produces deterministic
results’’. The quantum game method is used in a further study. The results show that the
explanation of the game corresponding to a stationary probability distribution is that the
probability of the initial capital has reached parity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Parrondo’s paradox is a paradox in game theory and is named after its creator, J.M.R. Parrondo, a Spanish physicist.
Parrondo’s games present a case where given two games, each one with a higher probability of losing than of winning,
it is possible to produce a winning outcome when they are played alternately or in a periodic order. The seminal papers
concerning Parrondo’s paradox were published by Harmer and Abbott in 1999 [1,2]. Already, Parrondo’s paradox has been
confirmed by means of computer simulation, the Brownian ratchet and discrete time Markov chain theory and has been
developed into many different versions [3–8]. Flitney et al. also carried out an analysis of the quantum game based on
Parrondo’s paradox [9,10]. Although Parrondo’s paradox is a counterintuitive phenomenon, where losing games combined
can produce a winning result, similar phenomena can be found in many research areas [11–16]. Therefore, Parrondo’s
paradox is used in biology, physics and economics and so on.

Dr. Parrondo gave the initial version of the paradox game, which was composed of two associated, tossing biased coin
games A and B, as shown in Fig. 1. Winning a game earns 1 unit and losing surrenders 1 unit.

(1) Game A is a game of tossing biased coin 1 with the probability of winning p1.
(2) Game B is a little more complex. If the present capital is a multiple of some integer M , a biased coin 2 is tossed with

probability of winning p2; if not, another biased coin 3 is tossed, with probability of winning p3.

Effectively choosing the values of probabilities p1, p2, p3 and modulus M , playing games A and B individually would
result in negative results. However, when two losing games are played in alternating or random sequences, this will lead to a
winning result. Harmer et al. [17] carried out rigorousmathematical analysis of such a paradox by using recursive conditions
for a discrete Markov chain and the theory of Shannon information entropy, and obtained the following conclusions:

∗ Corresponding author.
E-mail address: xienenggang@yahoo.com.cn (N.-g. Xie).

0378-4371/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2010.10.039

http://dx.doi.org/10.1016/j.physa.2010.10.039
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:xienenggang@yahoo.com.cn
http://dx.doi.org/10.1016/j.physa.2010.10.039


580 Y.-f. Zhu et al. / Physica A 390 (2011) 579–586

A

Lose

p2

1–p1

1–p2 p3 1–p3

p1

Win

LoseWin LoseWin

#1

#2 #3

The capital can
be divided by M

The capital cann't
be divided by M

B

Fig. 1. Descriptions of games A and B.

Fig. 2. Discrete time Markov chain of game AB defined by residual states.

Table 1
Possible changes in one step of AB.

State changes 010 030 012 032 121 101 123 103
Probabilities p1(1− p3) (1 − p1)p3 p1p3 (1−p1)(1−p3) p1(1− p3) (1 − p1)p2 p1p3 (1−p1)(1−p3)
State changes 230 210 232 212 301 321 303 323
Probabilities p1p3 (1−p1)(1−p3) p1(1− p3) (1 − p1)p3 p1p2 (1−p1)(1−p3) p1(1− p2) (1 − p1)p3

(1) when p1 < 0.5, game A will produce a losing result;
(2) for an arbitrary case withM ≥ 3, if

p2 <
(1 − p3)M−1

pM−1
3 + (1 − p3)M−1

, (1)

then game B will produce a losing result;
(3) for an arbitrary case of a random combination of playing games A and B, whenM ≥ 3, if q2 >

(1−q3)M−1

qM−1
3 +(1−q3)M−1 , the result

of randomly playing games A and B is winning, where q2 = γ p1 + (1 − γ )p2, q3 = γ p1 + (1 − γ )p3 and parameter γ
is the probability of playing game A.

2. The theoretical analysis of game AB

Let game A and game B be played one time, together, as a step. If the capital at time t is X(t), Y (t) = X(t)mod 4, then
the state set of the residue Y (t) is E = {0, 1, 2, 3}. The discrete Markov chain defined by the states of the residue Y (t) can
be seen in Fig. 2, where clockwise is a winning direction. From steps t to t + 1, there are only 16 kinds of state changing
processes of residue Y (t), as shown in Table 1.

On the basis of Table 1 and Fig. 2, the transition probability matrix is as follows:

P =

 p1 − 2p1p3 + p3 0 1 − p1 − p3 + 2p1p3 0
0 p1 + p2 − p1p3 − p1p2 0 1 − p1 − p2 + p1p2 + p1p3

1 − p1 − p3 + 2p1p3 0 p1 − 2p1p3 + p3 0
0 1 − p1 − p3 + p1p3 + p1p2 0 p1 − p1p2 + p3 − p1p3

 . (2)
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