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h i g h l i g h t s

• A decentralized algorithm for avoiding cascaded failures in complex networks is proposed.
• The algorithm is based on information about the closest neighbours of each node.
• The algorithm is implemented locally and does not need a centralized control system.
• A mathematically rigorous proof of convergence with probability 1 is provided.
• The maximum flow and the constant flow supply/demand problems are also considered.
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a b s t r a c t

A decentralized random algorithm for flow distribution in complex networks is proposed.
The aim is to maintain the maximum flowwhile satisfying the flow limits of the nodes and
links in the network. The algorithm is also used for flow redistribution after a failure in (or
attack on) a complex network to avoid a cascaded failure while maintaining the maximum
flow in the network. The proposed algorithm is based only on the information about the
closest neighbours of each node. A mathematically rigorous proof of convergence with
probability 1 of the proposed algorithm is provided.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The maximum flow problem has been a classical research topic in the field of complex networks. Since Ford and Fulker-
son [1] introduced their augmenting paths algorithm in 1956, many algorithms have been developed to study and solve this
problem [2–10]. Applications of the maximum flow problem include the determination of the maximum steady-state flow
of petroleum products in pipelines, cars on roads, messages in telecommunication networks, and electricity in electrical
grids [11]. It is also used in computer vision problems [12] and World Wide Web analysis [13].

Several research works developed decentralized algorithms to solve themaximum flow problem. These algorithmswere
mainly decentralized versions of originally centralized algorithms. For example, Segall [14] proposed three algorithms based
on Refs. [1,2,15], Cheung [16] proposed an algorithm based on Ref. [1], and Awerbuch [17] proposed an algorithm based on
Ref. [18]. These algorithms assume that the network contains only one source and one sink. As a result the decentralized
versions are limited to single-source single-sink networks.
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In a typical centralized algorithm, multi-source multi-sink networks are transformed into a single-source single-sink
network and then the maximum flow is computed. Obviously, this transformation is not extendable to decentralized algo-
rithms. Although recent publications considered the maximum flow problem in multi-source multi-sink planer networks
without this transformation [12,19], the information regarding the status of all the nodes and the links in the network are
assumed to be readily available for a centralized system to apply the algorithm. On the contrary, the algorithm proposed in
this paper is natively decentralized and capable of handling multi-source multi-sink networks.

In addition, the flow in the network should be distributed such that themaximum capacities of the network elements are
not exceeded. Otherwise, the network would potentially be vulnerable to cascaded failures. Cascaded failures in complex
networks have been the subject of many studies [20,21] including, but not limited to, cascaded failures in urban traffic
networks [22–24] and power grids [25,26].

In electrical power distribution systems, for example, cascaded failures have been attracting the attention of researchers
due to the catastrophic impact they have on the networks [27–29]. A cascaded failure is initiated when a node or a link in
the complex network is lost due to a random failure or a targeted attack, and the flow passing through the lost node or link
is redistributed to other nodes and links in the network. If not executed properly, the redistribution may cause other nodes
and links to become overloaded and therefore disconnected from the network. This effect may propagate throughout the
network and the entire network may be affected [30].

Cascaded failures were the reason for large blackouts throughout the world (e.g. Refs. [31–34]). As a consequence, re-
searchers have been developing control algorithms for power flow redistribution with minimum load loss [35,30,36,37].
Typically, the maximum power flow that can be delivered to the loads is calculated by applying linear programming which
has been used since the 1970s [35,38–40,36]. However, similar to the maximum flow algorithms, linear programming re-
quires the status of all the nodes and the links in the network to be available for a centralized control system.

Switched networks [41,42] are another type of networks that are controlled by a single server that operates locally on
one node at a time, but the location of the server is a control variable that is determined using information from the entire
network represented by a hybrid dynamical system [43].

The new algorithm proposed in this paper to drive the flow distribution in a complex network aims to avoid cascaded
failure in the networkwhilemaintaining themaximum flow. The novel decentralized randomized control algorithm is based
on simple local control rules that are based only on information about the closest neighbours of each node in the network.
Unlike the algorithms discussed abovewhere a central controller is required, the proposed algorithm is implemented locally
at each node. As a result, the computational costs are reduced and less information needs to be transferred on the network.

In addition, the algorithm is directly applicable to multi-source multi-sink networks. Another advantage of the proposed
algorithm is that the flow values and capacities in the network can be real numbers and not limited to integer values.

The proposed algorithm is theoretically verified. In particular, this paper provides a mathematically rigorous proof of
convergence of the algorithmwith probability 1 for any initial flow distribution. The behaviour of the algorithm is described
by an absorbing Markov chain and the algorithm is shown to converge to one of the absorbing states. Markov chains with
absorbing states are already being used to model networks [44,45]. The randomized algorithm used in this paper is inspired
by the distributed random algorithm used in Ref. [46] for blanket coverage self-deployment of a network of mobile wireless
sensors.

The remainder of this paper is organized as follows: the flow redistribution problem addressed in this paper is formulated
in the next section alongwith two special cases. The proposed control algorithm is detailed in Section 3where the algorithm
is proved to converge to a solution with probability 1 and a summary of the simulation procedure is provided. Simulation
results are shown in Section 4, followed by the conclusion in Section 5.

2. Problem statement

Consider a complex network modelled by a graph G = (N , L) defined by a set N of n nodes connected by a set L of l
links. For a given time k, each node i ∈ N is associated with a finite real value Ni(k) that corresponds to the actual net flow
in the node and represents the flow supply or demand of the node. The node i is a source (supply) node if

0 < Ni(k) ≤ Nimax (1)

where Nimax is a predefined positive value representing the maximum capacity of the source node i to supply flow. The node
i is an intermediate (transshipment) node if

Ni(k) = 0. (2)

The node i is a sink (demand) node if

Nimin ≤ Ni(k) < 0 (3)

where Nimin is a predefined negative value representing the maximum capacity of the sink node i to demand flow.
Each link ⟨i, j⟩ ∈ L connecting the two nodes i and j is assigned a flow value Fi,j(k) that should not exceed a maximum

capacity

|Fi,j(k)| ≤ Fi,jmax; (4)



Download	English	Version:

https://daneshyari.com/en/article/10480906

Download	Persian	Version:

https://daneshyari.com/article/10480906

Daneshyari.com

https://daneshyari.com/en/article/10480906
https://daneshyari.com/article/10480906
https://daneshyari.com/

