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HIGHLIGHTS

We provide a general result establishing the global efficiency for all subdivided stars graphs.

We determine the global efficiency of the Metropolitan Atlanta Rapid Transit Authority (MARTA).

The MARTA network is about 82% as efficient as a network where stations are connected by a direct line.
Our conclusion is that subdivided star networks can be efficient models for subways.
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1. Introduction

The distance d(i, j) between any two vertices i and j in a graph is the number of edges in a shortest path between i and j.
If there is no path connecting i and j, then d(i, j) = oco. In 2001, Latora and Marchiori introduced the measure of efficiency
between vertices in a graph [1]. The (unweighted) efficiency between two vertices i and j is defined to be €;; = ﬁ for all
i # j. The global efficiency of a graph Egjo(G) = ﬁ Zi# € (v;, vj) which is simply the average of the efficiencies over all
pairs of the distinct n vertices.

In 2002, Latora and Marchiori explored the global efficiency of the Boston Subway (MBTA) and found that the MBTA
network is 63% as efficient as a network where there is a direct line between any two stations [2]. Motivated by the design
of the Metropolitan Atlanta Rapid Transportation Authority (MARTA) Subway network (see Fig. 6), we investigate the global
efficiency of subdivided stars. We show that networks of this type have a high level of efficiency. We apply these ideas to an
analysis of the MARTA Subway system and show that their network is 82% as efficient as a network where there is a direct
line connecting each pair of stations.
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2. Efficiency

Let P, denote the path on vertices vy, vo, ..., v, With edges vivy, Vv, ..., Va1V, The distance d(v;, v;) between
distinct vertices v; and v is |i — j|. Hence the efficiency between v; and vj is € (v;, vj) = m = ﬁ
i>Vj
We present an example using a path with 7 vertices.

Example 1. Let G = P; with vertices A, B, C, D, E, F and G.

A B C D E F G
*—0o0—0—0—0—0—90

The distances between each pair of vertices are given in the matrix shown below:

LG [A[B[C|IDJEJF]|G

A 0[1]2[3]4[5]6
B 1/0[1]2(34][5
C 2(1(0[1]2[3]4
DM =5 3[2(1]0]1]2]3
E 4321012
F 5(4(3]2]1]0]1
G 6|5(4(3]2]1]0

The efficiency matrix is then as follows:
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We note that the matrix is symmetnc about the main diagonal. We can also sum the elements in the upper triangle of the
matrix: 6(1) +5 (1) + 4 ( )+3(3) +2(3) + 1(3). Finally we divide by the number of non-diagonal elements. Therefore

Eaor(P) = 752 (X1 ) = 22,

Theorem 2. Egiop(P,) = ﬁ <Z?;11 ?)

Proof. Without loss of generality we assume the starting vertex is located to the left of the ending vertex. Note that this will
only account for half of the efficiencies. If we want to move i vertices to the right there are only n — i starting vertices. Hence
for the efficiency matrix of P,, there are n — i pairs of vertices whose efficiency is % Hence by doubling our efficiencies, we

have Egop(Po) = 2 (205 ). m

As expected, the global efficiency of a path will vary inversely to the number of vertices. We state this formally in our
next theorem.

Theorem 3. 1My, oo Egip(Pr) = iMoo 7255 (Z?;f ";f) —o0

1

Proof. For the sake of completeness, we include details. We recall the Mascheroni constant

n—oo - 1
i=1

1
y = lim (Z —lnn), where 0 < y < 0.59 [3].

Rearranging yields lim,,_, o, Z?:l } =y +lim,_, » Inn.
Then

, 2 Sn—i , o
nh»n;lon.(n_]) (; i ):nllangon (n—]) (Z(l ))
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Sinceasn — 1 — oo, n — o¢ the upper term on the summation can be changed fromn — 1 to n.
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