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a b s t r a c t

We present an automated algorithm for inferring analytical models of closed reactive bio-
chemical mixtures, on the basis of standard approaches borrowed from thermodynam-
ics and kinetic theory of gases. As input, the method requires a number of steady states
(i.e. an equilibria cloud in phase–space), and at least one time series of measurements for
each species. Validations are discussed for both the Michaelis–Menten mechanism (four
species, two conservation laws) and the mitogen-activated protein kinase–MAPK mecha-
nism (eleven species, three conservation laws).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The reverse engineering of biological networks from experimental observations has recently gained increasing attention,
owing to remarkable advancements in modern high-throughput techniques for the generation of time series data on
metabolites, genes and other components of biological relevance [1]. However, due to high dimensionality, the latter still
remains a demanding task that often requires a priori knowledge on the system structure. Predictive mathematical models
are highly desirable, for instance, for the external control of cellular functions, and this has motivated an intense effort in
such a direction [2,3]. In this work, we intend to investigate the ability of some classical thermodynamic approaches for the
automatic prediction of equilibria, dynamical behavior and system structure. The main advantage of such an approach is
that it does not require prior knowledge on the underlying biochemical mechanism, and it is solely based onmeasurements
of species concentrations in closed systems.

We focus on biological systems formed by several species interacting according to a web of (bio)chemical reactions in
closed systems under fixed temperature T and volume V . We further assume that dissipation is ensured by the existence of a
global Lyapunov function G, which is typically linked to a thermodynamic potential, and a unique steady state (equilibrium)
is reached after a sufficiently long time. Let the concentration of n species evolve in time according to an autonomous system
of ordinary differential equations (ODEs):

ẋ =
dx
dt

= f (x), (1)

with x = [x1, . . . , xn]T defining the system state (e.g. in terms of molar concentrations xi). Let xeq and G(x) be the unique
equilibrium state of the ODEs (1) and its global Lyapunov function, respectively. Hence, at all instant t , the time derivative of
G is non-positive, Ġ = ∇Gf ≤ 0, and it vanishes at steady state: Ġ (T , V , xeq) = 0. Time dynamics (1) is often characterized
by linear constraints (e.g. due to conservation of themole number of elements forming the chemical species). Thus, assuming
the presence of r conserved quantities, there exists a fixed (r × n) matrix M such that, at all time instants t:

Mx(t) = C, (2)
with C being an r-component column of fixed quantities (conserved moieties).
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Fig. 1. Geometry underpinning the constrained minimization problems (8) and (14): Solutions are located where the affine hyperplane x + M̄ is tangent
to the G function iso-lines. Vectors δx spanning the local tangent space to the equilibrium cloud are thus linked to both the null space of the matrix
M (M = kerM) and the second derivative matrix H of the Lyapunov function G. As a result, orthogonality between the columns of M and the gradient of
G (∇G) implies:M

T
Hδx = 0.

2. Searching for conservation laws

Neither the number nor the expressions of the conservation laws (2) are typically known when investigating on a new
biological phenomenon, unless pre-existing knowledge on the reaction stoichiometry is available. For addressing the above
issues, the suggested approach is based upon the analysis of a collection of scattered steady states (experimental equilibrium
cloud), and at least one time series of species concentrations evolving from an arbitrary initial state. In this work, we
perform inspection of the equilibrium cloud by means of principal component analysis – PCA – [4] in order to estimate the
cloud dimension which, as discussed below, indicates the number of conservation laws. For the sake of completeness, it is
worth stressing that more recent non-linear techniques, such as diffusion maps [5], may also be adopted for estimating the
dimension r .

We notice that, in a perfectly closed system, thermodynamics and conservation laws rule the geometry of the manifold
collecting all the equilibrium states. As a result, the matrix M is fully determined upon computation of the local tangent
space to such a manifold. According to the pictorial representation in Fig. 1, we notice that the following relationship holds:
M

T
H1X = 0. Here, the columns of the n× (n− r) matrixM = ker(M) span the null space ofM,H is the second derivative

matrix of the Lyapunov thermodynamic function G while the columns of the (n × r) matrix 1X form a basis of the local
tangent space of the equilibrium cloud. As a result, the following equation holds:

M ′
=


ker


ker1XT T H−1

T
, (3)

where the superscript T and the prime symbol ′ denote transposition and the orthonormal basis respectively. For numerical
purposes, a generic column δx of thematrix1X can be conveniently approximated by local interpolation or finite differences.
Nevertheless, we stress that adoption of (3) may lead to inaccurate results due to a poor estimate of the vectors δx, or even
to a lack of knowledge on the function G such as the activity coefficients for non-ideal mixtures (see below). Therefore,
below we describe a stochastic method, based on the Metropolis algorithm [6], enabling an accurate computation of M by
processing the time series of species concentrations. First, we initialize the k-th row, Mk, of the conservation law matrix:
This can be made either stochastically or even on the basis of the estimate (3). We assume that all species concentrations
are recorded at a discrete set of time instants (tj) between t1 and tm: The latter data is thus available in the form of a time
series, stored in the (n×m) data array X̂ = {x̂ij}, with the generic element x̂ij denoting the concentration of the i-th species
at the time instant tj. Next, we compute the following deviation quantity:

dk =

m
j=1

Ĉkj − C̄k

 , (4)

where, for the k-th conservation law, the j-th term of the time series {Ĉkj} and its time-averaged value C̄k are defined as:

Ĉkj =

n
i=1

x̂ijMk(i), C̄k =


m
j=1

Ĉkjdtj


(tm − t1) ,

with dtj the duration of the time interval corresponding to the term Ĉkj.
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