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a b s t r a c t

The topological structure of a dynamical network plays a pivotal part in its properties,
dynamics and control. Thus, understanding and modeling the structure of a network will
lead to a better knowledge of its evolutionary mechanisms and to a better cottoning
on its dynamical and functional behaviors. However, in many practical situations, the
topological structure of a dynamical network is usually unknown or uncertain. Thus,
exploring the underlying topological structure of a dynamical network is of great value.
In recent years, there has been a growing interest in structure identification of dynamical
networks. As a result, various methods for identifying the network structure have
been proposed. However, in most of the previous work, few of them were discussed
in the perspective of optimization. In this paper, an optimization algorithm based on
the projected conjugate gradient method is proposed to identify a network structure.
It is straightforward and applicable to networks with or without observation noise.
Furthermore, the proposed algorithm is applicable to dynamical networks with partially
observed component variables for each multidimensional node, as well as small-scale
networks with time-varying structures. Numerical experiments are conducted to illustrate
the good performance and universality of the new algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The last decade had witnessed the birth and explosive growth of the field of complex dynamical networks, triggered
by the seminal works of Watts and Strogatz [1] on small-world networks in 1998 and of Barabási and Albert [2] on scale-
free networks in 1999. Nowadays, dynamical networks have become ubiquitous as models of many real-world systems.
Examples range from the Internet, the World Wide Web, power grids [3], transportation networks, social and economic
networks [4] to a plethora of examples in systems biology like gene regulatory networks [5], metabolic networks [6] and
so on.

In the initial phase of the field’s development, the focus was mainly placed upon the study of statistical properties,
collective behaviors and control of dynamical networks with predefined topological structures [7], which has provided a
tremendous insight into the interplay between the structures and functions. As is known, the topological structure of a
dynamical network plays a pivotal role in determining its properties, dynamics and control [8]. Thus, understanding and
modeling the structure of a dynamical network will lead to a better knowledge of its evolutionary mechanisms, and to a
better control on its dynamical as well as functional behaviors [9]. However, in reality, it is invariably the case that the
topological structure of a dynamical network is unknown or uncertain. So it is very important to investigate the underlying
topological structure of a network. Indeed, active research during recent years has resulted in various approaches for the
identification of network structures.
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For interacting deterministic systems, some new approaches have been presented for topology identification [10–15]
based on adaptive control and outer synchronization between two networks [16,17]. For simultaneously observed time
series, some techniques based on measuring the cross correlation or partial correlation among time series have been
proposed. For example, a method based on the dynamical correlation was proposed by Ren et al. [18] to predict the network
structure. Granger causality is a widely employed technique based on linear regression for causal link detection, particularly
in neuroscience and economics [19]. Many extensions have also been made to generalize the linear Granger causality to the
nonlinear case [20]. Inferring directed connections among observed time series using Bayesian networks is alsowidely used,
where the Bayesianmodels [21] represent probabilistic relationship betweenmultiple interacting entities. Some interesting
techniques based on the theory of recurrences [22] have been proposed. In 2007, Romano et al. introduced a method to
uncover directional coupling between two interacting systems based on the mean conditional probabilities of recurrence,
which is applicable to bothweak and strong couplings [23]. Later on, by generalizing partial phase synchronization, Nawrath
et al. proposed partial recurrence-based synchronization analysis for inferring the interactions of oscillators with multiple
time scales [24]. Very recently, a permutation-based measure named inner composition alignment was introduced to
identify relations between subsystems [25].

However, in the synchronization-basedmethods, the interacting systems and observed data have to be noise free, which
usually does not conform to practical cases [10–15]. The correlation-basedmethods are incapable of distinguishing between
direct and indirect interactions, which in many situations do not provide very satisfactory results [18]. Those techniques
based on Granger causality [19,20] or Bayesian networks [21] are usually computationally expensive and require a huge
amount of memory and time for computation. The methods based on recurrence properties [23,24] can only deal with
very small-scale networks, while the performance of the permutation-based method [25] depends on the density of the
considered network. Moreover, most of the approaches cannot tell the coupling strength among nodes [18–21,23–25].

On the other hand, the structure identification problem is a typical parameter identification problem if the configuration
matrix is taken as a parameter, and optimization methods are widely used in such parameter identification problems,
see Refs. [26–28]. Based on the above discussions, in this paper, a technique for inferring the topology of a weighted
dynamical network topology is proposed based on optimization. The proposed optimization based algorithm is also
robust to observation noise. In particular, the new algorithm works well when only some component variables of each
multidimensional node are observable. Interestingly, the method is applicable to small-scale networks with time-varying
topological structures as well.

The rest of the paper is organized as follows. Theoretical modeling and mathematical analysis of network structure
identification based on optimization are presented in Section 2. The detailed algorithm based on the projected conjugate
gradientmethod is given in Section 3. Five illustrative examples are provided in Section 4 for verification and demonstration.
Finally, some conclusions and an outlook are summarized in Section 5.

2. Problem formulation and analysis

Consider the following dynamical network consisting of N linearly-coupled systems:

ẋi(t) = fi(xi(t), t) +

N
j=1

cijAxj(t), i = 1, 2, . . . ,N, (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))⊤ ∈ Rn is the state vector of the i-th node, and fi : Rn
× R+

→ Rn is a smooth
vector field governing the dynamics of the isolated i-th node. The configuration matrix C = (cij)N×N describes the coupling
topology of the network, in which cij ≠ 0 if there is a coupling from node j to node i (j ≠ i); otherwise cij = 0. Moreover, the
configurationmatrix satisfies the constraints that the sumof entries of each row is zero, i.e.,

N
j=1 cij = 0, for i = 1, 2, . . . ,N .

Matrix A ∈ Rn×n is the inner-coupling matrix. For simplicity, A is assumed to be an identity matrix, i.e., A = In×n. Thus, the
network model can be written as

ẋi(t) = fi(xi(t), t) +

N
j=1

cijxj(t), i = 1, 2, . . . ,N. (2)

Introduce X = (x11, x12, . . . , x1n, . . . , xN1, xN2, · · · , xNn)⊤ ∈ RNn and F = (f11, f12, . . . , f1n, . . . , fN1, fN2, . . . , fNn)⊤ ∈ RNn.
Assume that the initial value of X(t) at t = 0 is X0. Then network (2) can be rewritten as

Ẋ = F(X) + C ⊗ In×n · X,
X(0) = X0,

(3)

where ⊗ denotes the Kronecker product.
With a given configuration matrix C , the nodal dynamics X(t) is thus determined by (3). Define a mapM : RN×N

→ RNn

as C → X(t) = M(C), and the admissible set B for possible configuration matrix C as

B =


C ∈ RN×N

 N
j=1

cij = 0, i = 1, 2, . . . ,N


. (4)
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