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a b s t r a c t

This paper investigates the analytical and numerical solutions to wide moving jams in
traffic flow. Under the framework of the Lagrange coordinates, a semi-discrete model and
a continuum model correlate with each other, in which the former model approaches the
latter as the increment 1M in the former model vanishes. This implies that the solution to
a wide moving jam in the latter model, which can be analytically derived using the known
theory, can be conceivably taken as an approximation to that of the former model. These
results were verified through numerical simulations. Because a detailed understanding
of the traffic phase ‘‘wide moving jam’’ is very important for the further development of
Kerner’s three-phase traffic theory, this study helps to explain the empirical features of
traffic breakdown and resulting congested traffic patterns that are observed in real traffic.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Kerner [1,2] introduced a ‘‘three-phase traffic theory’’ in which there are two phases in congested traffic: 1. Synchronized
flow and 2. Wide moving jam. This theory explains the traffic breakdown and other empirical features of traffic flow that
were observed on different highways in various countries. In this three-phase theory, the traffic breakdown is described as a
first-order phase transition from free flow to synchronized flow (F → S transition), whereas wide moving jams are formed
through a sequence of two phase transitions called F → S → J transitions: Firstly a F → S transition occurs and later and
usually at another road location a S → J transition is realized.

A wide moving jam with F → J transition was first discovered by Kerner and Konhauser [3] based on a numerical and
analytical study of a version of Payne’s model [4]. Later, the results of [3] about wide moving jams have been incorporated
and further developed in many traffic flow models, e.g., the characteristic features of wide moving jam phase in cellular
automaton models [5,6] and higher-order models [7–13]. Although most of these studies cannot show synchronized flow,
thus being unable to predict F → S → J transitions, they are important for the further development of traffic flow
theory, because the characteristic features of wide moving jams play a very important role in Kerner’s three-phase traffic
theory. On the other hand, most semi-discrete (car-following) models (e.g., in Refs. [14–16]) failed to analytically show
the characteristic features of a wide moving jam even through they are deterministic. This could be probably due to the
unavailability of analytical solutions to most non-linear ordinary differential systems.

This paper studies the characteristic features of wide moving jams in a semi-discrete model. Using the concept of the
Lagrange coordinates, the formulated semi-discrete model with an increment 1M could converge to a continuum higher-
order model for 1M → 0, where 1M is the mass between two adjacent particles. This implies consistency between the
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semi-discrete and continuum models. Therefore, with the error of O(1M) the characteristic parameters of a wide moving
jam in the former model can be well approximated by those in the latter model, which can be similarly derived through
application of the weak solution theory of hyperbolic conservation laws, as was shown in Zhang et al. [11–13]. To verify the
convergence, we numerically demonstrate that the semi-discrete model is able to reproduce a regular wide moving jam,
and that for the refinement of 1M its characteristic parameters do approach those that are analytically derived through the
continuummodel. Even with a large value of 1M = 1, in which the semi-discrete model reduces to a car-following model,
the approximation is also very good.

Here, we mention a similar establishment between the continuum and the car following models in Aw et al. [17] and
Greenberg [8,18], in which the convergence of the latter solution to the former solution was generally and indirectly
shown by ‘‘shrinking’’ the time and space coordinates such that the length of a car approaches zero [17]. More relevantly,
Greenberg’s analytical study of traveling waves that was based on different assumptions should be suited more generally
for a narrow and wide moving jam [8]. However, he did not show convergence and a comparison between analytical and
numerical solutions. In this regard, the present paper also serves as a supplement to the aforementioned studies. We should
also note that the formulation under the Lagrange coordinate system mostly results in ‘‘anisotropic’’ models, which are
related to those discussed under the Euler coordinate system, e.g., in Refs. [9,10,19–22].

The remainder of the paper is organized as follows. In Section 2, we discuss the basic concepts of one-dimensional fluid
in relation to the Lagrange coordinates, based on which we formulate an acceleration equation for traffic flow. In Section 3,
the linear stability condition of the equilibrium solution for the resulting continuummodel is derived and an analytical wide
moving jam solution is constructed. In Section 4, the semi-discrete model is naturally formulated based on the discussion
in Section 2, and the aforementioned convergence of its solution for a wide moving jam to that of the continuum model is
demonstrated through numerical simulations. We conclude the paper in Section 5.

2. General discussion of model equations

In most studies, the initial position of a particle is more generally taken as the Lagrange coordinates of the particle.
However, for a one-dimensional continuum like traffic flow, the totalmass upstreamof a particle also remains unchangeable
and thus is more conveniently used as the Lagrange coordinate to identify the particle. In this case, equations including
the mass conservation and acceleration are easily established, and it is straightforward to derive the motion equations of
particles by direct discretization of these equations.

2.1. Lagrange coordinates and mass conservation

Let M(x, t) denote the total mass not passing through position x at time t in a one-dimensional continuum. Then, the
density of the fluid is defined as

ρ(x, t) = lim
1x→0

M(x + 1x, t) − M(x, t)
1x

= Mx(x, t), (1)

and the flow is defined as

q(x, t) = − lim
1t→0

M(x, t + 1t) − M(x, t)
1t

= −Mt(x, t). (2)

Here, the mass M measures the quantity of substance in the continuum, which is denoted as the number of cars in traffic
flow. Application of the identityMxt = Mtx to Eqs. (1) and (2) in a smooth solution region gives rise to themass conservation:

ρt + qx = 0.

The formulation becomes the same as that in Refs. [23,24] by replacingM(x, t)with−N(x, t), whereN(x, t) is the totalmass
passing through location x at time t .

Under the continuum hypothesis, the total mass not passing through a specific particle remains a constant in the motion
or is independent of x and t because no overtaking is allowed.Moreover, for fixed t , Eq. (1) implies thatM is strictly increasing
of x as the vacuum is not considered or would be specially treated. Therefore, it is convenient to identify a specific particle
in the motion by the indexM (instead of x) and time t , which constitutes the Lagrange coordinate system under Eqs. (1) and
(2). Accordingly, we rewrite Eq. (1) as

s(M, t) = xM(M, t), (3)

where s(M, t) = (ρ(x, t))−1 is called the specific volume at (x, t) or (M, t), and x(M, t) is the position of particleM at time
t . The motion speed of particleM at time t is defined as

u(M, t) = lim
1t→0

x(M, t + 1t) − x(M, t)
1t

= xt(M, t). (4)
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