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a b s t r a c t

In this paper, we investigate a Langevin model subjected to stochastic intensity noise (SIN),
which incorporates temporal fluctuations in noise-intensity. We derive a higher-order
Fokker–Planck equation (HFPE) of the system, taking into account the effect of SIN by
the adiabatic elimination technique. Stationary distributions of the HFPE are calculated
by using the perturbation expansion. We investigate the effect of SIN in three cases:
(a) parabolic and quartic bistable potentials with additive noise, (b) a quartic potential
with multiplicative noise, and (c) a stochastic gene expression model. We find that the
existence of noise-intensity fluctuations induces an intriguing phenomenon of a bimodal-
to-trimodal transition in probability distributions. These results are validated with Monte
Carlo simulations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world systems are inhomogeneous and fluctuant. Stochastic processes are often used for modeling such
fluctuant systems inmany fields, including physics, biology, and chemistry. The dynamics in these systems can be described
by a Langevin equation given by

dx
dt

= f (x)+ g(x)ξx(t), (1)

where f (x) = −∂xU(x),U(x) denotes a potential, g(x) is an arbitrary function of x, and ξx(t) is the white Gaussian noise with
correlation


ξx(t)ξx(t ′)


= 2Dxδ(t − t ′). Although white noise can reflect microscale properties of fluctuations, it is uniform

when seen from mesoscopic or macroscopic time scales (Fig. 1(a)).
One widely used approach for incorporating mesoscopic or macroscopic inhomogeneity in noise is colored noise, where

the white noise ξx(t) in Eq. (1) is replaced by z(t)with the Ornstein–Uhlenbeck process:

dz
dt

= −
z
τ

+
ξz(t)
τ
, (2)

where ξz(t) expresses the white Gaussian noise [

ξz(t)ξz(t ′)


= 2Dzδ(t − t ′)]. Eq. (2) yields colored noise with the finite

correlation time τ , that is, ⟨z(t)z(t ′)⟩ = (Dz/τ) exp

−|t − t ′|/τ


. The existence of correlation time in the noise sources can

induce many phenomena, such as resonant activation [1] and noise-enhanced stability [2–6].
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Fig. 1. (Color online) Intuitive paths of (a) white noise and (b) SIN whose intensity is governed by the Ornstein–Uhlenbeck process (Eq. (4)).

In the present paper,we dealwithmesoscopic time-scale inhomogeneity in away other thanwith colored noise; here,we
consider temporal noise-intensity fluctuations. We assume that the noise intensity in Eq. (1) is not constant but modulated
by the Ornstein–Uhlenbeck process. Our model is described by the following coupled Langevin equations instead of Eq. (1):

dx
dt

= f (x)+ g(x)sξx(t), (3)

ds
dt

= −γ (s − α)+
√
γ ξs(t). (4)

Here, ξs(t) is the white Gaussian noise [

ξs(t)ξs(t ′)


= 2Dsδ(t − t ′)], and γ and α are the relaxation rate and the mean

of the Ornstein–Uhlenbeck process, respectively. The intensity-modulated noise term sξx(t) in Eq. (3) is herein called
stochastic intensity noise (SIN) (Fig. 1(b)). This point of view was originally introduced in the Heston stochastic volatility
models in financial engineering [7] and has since been analyzed in econophysics [8]. With f (x) ∝ x and g(x) ∝ x,
Eqs. (3) and (4) are similar to those in the Heston model, where the variance of noise is governed by the Feller process
(also referred to as the square-root process or the Cox–Ingersoll–Ross process). Escape events in the Heston model were
studied in Ref. [9] using a cubic potential. Note that the variable s in Eqs. (3) and (4) takes negative as well as positive
values since our model can be considered as white noise with multiplicative term s, which is in contrast with the positive
variance in the Heston model [7]. In physics, superstatistics includes the concept of temporal and/or spatial environmental
fluctuations [10–14]. Superstatistics was originally introduced, under specific conditions, to account for asymptotic power-
law distributions (e.g., q-exponential distributions and q-Gaussian distributions) that emerge asmaximizers of non-additive
(Tsallis) entropy [15,16]. Superstatistics has since been applied to the interpretation of quasi-equilibrium thermodynamics,
and concepts of superstatistics have also been applied to stochastic processes [11,13,17–20]. In particular, Ref. [17]
extended superstatistics to the path-integral representation and showed that some stochasticmodels can be covered by this
representation. A direct connection between Tsallis statistics and financial stochastic processes was indicated in Ref. [21].

Inmany biological and chemical processes, the relaxation time of xmay be larger than that of environmental fluctuations
(noise-intensity processes). This is the case in stochastic gene expressionmodels in which the decay time of x is on the order
of minutes [22] (Section 5.3). Bearing this fact in mind, we will investigate systems driven by SIN with faster decay time
compared with that of x (γ ≫ 1). Furthermore, in real-world systems, we expect that the f (x) in Eq. (3) is often given by a
complex nonlinear function and is also accompanied by non-trivial multiplicative noise expressed by an appropriate g(x).
These properties are different from those for financial engineering. In order to obtain the probability distribution P(x, t),
we use adiabatic elimination with eigenfunction expansion [23]. We obtain a higher-order Fokker–Planck equation (HFPE)
with higher-order derivatives, not included in the conventional Fokker–Planck equation (FPE). We calculate stationary
distributions of the systems described by the HFPE by using the perturbation expansion.

To investigate the effects of SIN, we consider stationary distributions for three cases: (a) parabolic and quartic bistable
potentials with additive noise, (b) a quartic potential with multiplicative noise and (c) a stochastic gene expression
model. In the additive noise case (a), we show that SIN changes the stationary distribution from exponential forms (the
Boltzmann–Gibbs distribution) to non-exponential forms. At the same time, the stationary distributions of case (a) are
sharpened because of noise-intensity fluctuations. In case (b), we show that the existence of noise-intensity fluctuations
induces the transition of distributions: the stationary distributions are uni, bi, or trimodal, depending on the SIN parameters.
It is important to note that the trimodal distribution does not emerge under white noise. In case (c) which we call the gene
expression model, a nonlinear function is given as a drift term (change in expression levels). Thus, case (c) shows that our
approximation scheme can be applied to general configurations that include non-trivial drift terms.

The remainder of this paper is organized as follows. In Section 2, we describe themodel proposed in this paper. Adiabatic
elimination with eigenfunction expansion is applied to the model in Section 3 (details of the derivation of the HFPE are
explained in the Appendix). In Section 4, we proceed to the calculation of the stationary distributions of the obtained HFPE
by using the perturbation expansion. In Section 5, we investigate effects of SIN in the three cases (a), (b), and (c) mentioned
above. In Section 6, we analyze effects of higher-order derivatives in the HFPE on positivity and moments of distribution
functions, and also consider the opposite case, inwhich a decay time of the noise-intensity fluctuations is very slow (γ → 0).
Finally, we give the conclusions in Section 7.
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