
Physica A 390 (2011) 1111–1116

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

A theoretical model for uni-directional ant trails
Ozhan Kayacan
Department of Physics, Faculty of Arts and Sciences, Celal Bayar University, 45030 Muradiye, Manisa, Turkey

a r t i c l e i n f o

Article history:
Received 26 August 2010
Available online 2 December 2010

Keywords:
Ant trails
Cellular automata
Computer simulation

a b s t r a c t

A theoretical model of uni-directional ant traffic, motivated by the motion of ants in trail is
proposed. Two different type of ants, one of which smells very well and the other does not,
are considered. The flux of ants in this model is investigated as functions of the probability
of evaporation rate of pheromone. The obtained results indicate that the mean velocity of
the ants varies non-monotonically with their density. In addition, it is observed that phase
transition in the flux and the mean velocity vs. density occurs at certain density for a fixed
evaporation rate. The effective hopping probability is investigated as well depending on
the evaporation rate of pheromone. It is worth to note that the proposed model can be
generalized for vehicular traffic on freeways.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, particle-hopping models have attracted a great deal of attention and have been used to investigate the
physical systems of interacting particles far from equilibrium [1–4], including vehicular traffic [5,6] where the vehicles are
represented by particles. In general, the interparticle interactions tend to inhibit theirmotions and therefore themean speed
decreases monotonically as the density of the particles increases. Such models are formulated usually in terms of cellular
automata [7]. On the other hand, it is shown in a recent study [8] which is motivated by the flux of ants in a trail [9] that
the mean speed of the particles varies non-monotonically with their density because of the coupling of their dynamics
with another dynamical variable. The basic principles which govern the formation of the ant trails are of fundamental
importance to understand the population biology of social insect colonies [10]. These fundamental studies have shed light
on new insights and have found applications in computer science [11], communication engineering [12], artificial swarm
intelligence [13] and microrobotics [14].

The study of diffusion laws in disordered systems has attracted a great deal of attention because of the physical
importance of the problem [15] in which a method for the study of random walks on disordered systems is presented and
applied to the problems of diffusion on percolation clusters. The authors describe the method by using two different types
of ants: a blind ant and a myopic ant [16]. The myopic ant is not literally blind: it is capable of choosing among the possible
sites with an allowed probability. A similar consideration applies to the blind ant with a smaller allowed possibility. As for
the ants in trail, on the other hand, the ants communicate with each other by dropping a chemical called pheromone on
the substrate as they crawl forward [10,17]. The trail pheromone adheres to the substrate long enough for following ants
to smell it and follow the trail. In this study, we develop a cellular automata model which is based on uni-directional flow
in an ant trail. Each site of our one-dimensional ant trail represents a cell that can occupied by only one ant at a time. The
lattice sites are labelled by the index i, i = 1, 2, . . . , L. Here L denotes the length of the lattice. Each site assumes two binary
variables Ai and pi; Ai takes 0 or 1 depending on whether the site is empty or occupied by an ant, and pi takes 0, 0.25, 0.5,
0.75 and 1 depending on the evaporation rate of pheromone. The details of evaporation of pheromone are given below.
Furthermore we assume that ants do not move backwards but do forwards and the hopping probability is higher if there is
a pheromone in front of an ant.
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2. The model

The state of the ant colony is updated at each time in two stages [8,18]. In first stage, ants are allowed to move and the
set of ants, {A(t + 1)}, are obtained at the time t + 1 using the full set of {A(t), p(t)}. In second stage, the set of {p(t)} is
updated so that at the end of second stage, the new configuration {A(t + 1), p(t + 1)} at time t + 1 is obtained. Since a
uni-directional motion is assumed, ants do not move backward. We consider two different cases; in our first case, smelling
of ants is good and in the second it is poor. These cases are very similar to those of blind and myopic ants in the study of
random walks on disordered systems [15,16].

In these two cases, we follow the rules given below.
In first stage, the position of ants {A(t)} is updated in parallel by following the rules;
If the site is occupied by an ant at time t , i.e. Ai(t) = 1 and Ai+1(t) = 0 then the ant moves to the next site i+ 1 with the

probability

prob. =


q1, if Ai+1(t) = 0 and pi+1(t) = 1
q2, if Ai+1(t) = 0 and pi+1(t) = 0.75
q3, if Ai+1(t) = 0 and pi+1(t) = 0.5
q4, if Ai+1(t) = 0 and pi+1(t) = 0.25
q5, if Ai+1(t) = 0 and pi+1(t) = 0.125
0, if Ai+1(t) = 1

 . (1)

It is worth noting that we choose q1 > q2 > q3 > q4 > q5 to be consistent with real ant trails.
In the second stage, the evaporation of pheromone is determined as follows:
At each site i occupied by an ant after the first stage a pheromone is dropped:

pi(t + 1) = 1, if Ai(t + 1) = 1. (2)

However, any free pheromone at a site i not occupied by an ant evaporates with the probability f per unit time:

probability =



1, if Ai(t + 1) = 1
1 with probability 1 − f ,
if Ai(t + 1) = 0 and pi(t) = 1;
otherwise pi(t + 1) = 0.75
0.75 with probability 1 − f ,
if Ai(t + 1) = 0 and pi(t) = 0.75;
otherwise pi(t + 1) = 0.5
0.5 with probability 1 − f ,
if Ai(t + 1) = 0 and pi(t) = 0.5;
otherwise pi(t + 1) = 0.25
0.25 with probability 1 − f ,
if Ai(t + 1) = 0 and pi(t) = 0.25;
otherwise pi(t + 1) = 0



(3)

where f is the pheromone evaporation probability per unit time. Please note that if the acception criterion is not satisfied
when Ai(t + 1) = 0, the value of pheromone at time t + 1 reduces by −0.25. But whenever site i is occupied by an ant,
the pheromone value at site i is set pi(t + 1) = 1. In all simulations, we apply periodic boundary conditions so that the
number of ants is conserved but the number of pheromones is not. As mentioned previously, computer simulations are
performed for two different cases: (I) q1 = 1, q2 = 0.75, q3 = 0.5, q4 = 0.25, q5 = 0.125; (II) q1 = 1, q2 = 0.25, q3 =

0.125, q4 = 0.062, q5 = 0.031. Case (I) corresponds to the ants who smell very well, and Case (II) corresponds to the ants
whose smelling is poor. In certain limits, we believe that our model could be applied to the vehicular traffic on freeways
[19].

In all simulations performed in this study, the lattice size is chosen L = 1000 and we begin with a random initial
configuration. The system of ants reaches the equilibrium after typically 105 time steps, so we begin to calculate the
observables, i.e. flux and mean velocity, over the next 105 time steps.

3. Results and discussion

The flux as a function of density is themost important quantity in flowproperties of trafficmodels. Flux is just the product
of density and the mean velocity, F = ρV ; here F is the flux, ρ is the density and V is the mean velocity. In Fig. 1, the flux
vs. density and the mean velocity vs. density for the case (I) are illustrated for several values of f . The density dependence
of the flux for case (I) is shown in Fig. 1(a). In Fig. 1(a), for some f values, sharp crossovers are observed at some densities,
which indicate a transition. Sharp crossovers are also seen in the density dependence of the mean velocity in our ant trail
model, (Fig. 1(b)). There is a sharp increase in flux and mean velocity at ρ = 0.248, 0.483, 0.507, 0.76, 0.811 for f = 0.001,
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