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a b s t r a c t

We studied damage spreading in a Driven Lattice Gas (DLG) model as a function of the
temperature T , the magnitude of the external driving field E, and the lattice size. The
DLG model undergoes an order–disorder second-order phase transition at the critical
temperature Tc(E), such that the ordered phase is characterized by high-density strips
running along the direction of the applied field; while in the disordered phase one has a
lattice-gas-like behavior. It is found that the damage always spreads for all the investigated
temperatures and reaches a saturation value Dsat that depends only on T . Dsat increases for
T < Tc(E = ∞), decreases for T > Tc(E = ∞) and is free of finite-size effects. This
behavior can be explained as due to the existence of interfaces between the high-density
strips and the lattice-gas-like phase whose roughness depends on T . Also, we investigated
damage spreading for a range of finite fields as a function of T , finding a behavior similar
to that of the case with E = ∞.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The statistical mechanics of equilibrium phenomena is very useful for understanding the thermodynamic properties of
many-particle systems from a microscopical point of view. From its beginnings up to now, new developments and theories
have enriched it, culminating in the renormalization-group approach [1,2]. In nature, mostmany-particle systems are under
far-from-equilibrium conditions, and yet there is not a well-established theoretical framework to treat them, as in the case
of their equilibrium counterpart.

In order to overcome this shortcoming, many attempts have been made to gain some insight into the far-from-
equilibrium behavior, e.g. by studying simple models that are capable of capturing the essential non-equilibrium behavior.
Within this context, one of the best known paradigms of far-from-equilibrium systems is the two-dimensional driven lattice
gas (DLG) model proposed by Katz, Lebowitz and Spohn [3]. This model consists of a set of particles located in a two-
dimensional square lattice in contact with a thermal reservoir. Particles exchange places with nearest-neighbor empty sites
according to spin exchange, i.e. the Kawasaki dynamics. Also, an external drive is applied, causing the system to exhibit
non-equilibrium stationary states (NESS) in the limit of large evolution times. If a half-filled two-dimensional system is
considered (as in this paper), and for low enough temperatures, the DLGmodel develops an ordered phase characterized by
strips of high particle density running along the driving direction [4]. However, by increasing the temperature a second-order
non-equilibrium phase transition into a disordered (gas-like) phase takes place. The critical temperature (Tc) depends on
the value of the driving field E, and in the limit of E → ∞ one has Tc ≃ 1.41TO, where TO is the Onsager critical temperature
of the Ising model [5]. The critical behavior of the DLGmodel has been studied by using many different techniques [6], such
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as field theoretical calculations [7–10], Monte Carlo simulations [11–15], finite-size scalingmethods [13,14], and short-time
dynamic scaling [16–18], but the complete understanding of this model is still lacking and has originated a long-standing
controversy [6–18]. It should be noticed that Monte Carlo studies of the DLG model are mostly focused on understanding
the critical behavior of NESS for half-filled lattices.

From the theoretical point of view, it is interesting and challenging to study the dynamic evolution of a very small pertur-
bation in a non-equilibrium system. Oneway to do this is to apply the concept of damage spreading. Originally introduced by
Kauffman [19,20] to study biological systems, years later it was applied by Stanley et al. [21] and Derrida et al. [22] to study
physical properties in non-deterministic systems such as Ising Model or Spin Glasses. This method is based on the point-
to-point comparison between two slightly different configurations of a system that are allowed to evolve simultaneously.
In order to achieve these configurations, one sample is initially perturbed by slightly changing its configuration, so that it is
called the ‘‘damaged’’ sample, while the original sample remains unperturbed. Then the time evolution of the perturbation,
defined as the difference between configurations, is followed. In the long-time limit, the perturbation can either survive or
vanish, according to the values of the control parameters of the system.

Damage spreading studies were originally applied to the Ising model, spin glasses and cellular automata [19–22], but
they have also been applied to magnetic systems such as the Potts model with q-states, Heisenberg and XY models, two-
dimensional trivalent cellular structures, biological evolution, non-equilibrium models, opinion dynamics, ZGB model and
small world networks (see e.g. Ref. [23] and references therein, and for more recent results see Refs. [18,24–30]).

Within the broad context discussed above, the goal of our work is to give an overall description of the damage spreading
process in the DLG model as a function of the control parameters, i.e. the temperature and the field magnitude, and also of
the lattice dimensions.

The manuscript is organized as follows: the DLGmodel is described in Section 2, while in Section 3 details of the damage
spreading technique are explained. The results are presented and discussed in Section 4, and finally our conclusions are
stated in Section 5.

2. The model

The DLGmodel [3] is defined on the square lattice of size L×M with periodic boundary conditions along both directions.
The driving field, E, is applied along theM-direction. Each lattice site can be empty or occupied by a particle. If the coordinates
of the site are (i, j), then the label (or occupation number) of that site can be ηij = {0, 1}. The set of all occupation numbers
specifies a particular configuration of the lattice. The particles interact among them through a nearest-neighbor attraction
with positive coupling constant (J > 0). So, in the absence of any field, the Hamiltonian is given by

H = −4J


⟨ij;i′j′⟩

ηijηi′j′ , (1)

where ⟨·⟩ means that the summation is made over nearest-neighbor sites only.
The attempt of a particle to jump to an empty nearest-neighbor site,Wjump, is given by the Metropolis rate [31] modified

by the presence of the driving field, that is,

Wjump = min[1, e[∆H−ϵ1E]/kBT ], (2)

where kB is the Boltzmann constant, T is the temperature of the thermal bath,∆H is the energy change after the particle–hole
exchange, and ϵ1 = (1, 0, −1) assumes these values when the direction of the jump of the particle is against, orthogonal or
along the driving field E, respectively. The field is measured in units of J and temperatures are given in units of J/kB. In this
context, the critical temperature for the case with E = ∞ is Tc ≃ 3.2. The dynamics imposed does not allow elimination of
particles, so the number of them is a conserved quantity. Also, in the absence of a driving field, the DLG model reduces to
the Ising model with conserving (i.e. Kawasaki) dynamics. For further details of the DLG model, see e.g. Refs. [4,6,32].

3. The damage spreading method

The Damage Spreading (DS) method was initially introduced [19–22] to investigate the effects of tiny perturbations
introduced in the initial condition of physical systems on their final stationary or equilibrium states. In order to implement
the DS method in computational simulations [33,34], two configurations or samples S and S ′, of a given stochastic model,
are allowed to evolve simultaneously. Initially, both samples differ only in the state of a small number of sites. Then, the
difference between S and S ′ can be considered as a small initial perturbation or damage. In order to give a quantitative
measure of the evolution of the perturbation, the ‘‘Hamming’’ distance or damage D(t) is defined as

D(t) =
1
N

N
i,j

1 − δηij(t),η′
ij(t)

, (3)

where N = L × M is the total number of sites in the lattices, η′

ij(t)(ηij(t)) is the occupation number of site (i, j) in the
sample S ′(S), and δηi(t),η′

i (t)
is the Kronecker delta function. The sum runs over all sites of both samples, so 0 ≤ D(t) ≤ 1.
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