
Physica A 392 (2013) 2025–2037

Contents lists available at SciVerse ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

A modular attachment mechanism for software
network evolution
Hui Li ∗, Hai Zhao, Wei Cai, Jiu-Qiang Xu, Jun Ai
College of Information Science and Engineering, Northeastern University, Shenyang, 110819, China

a r t i c l e i n f o

Article history:
Received 18 August 2012
Received in revised form 10 January 2013
Available online 21 January 2013

Keywords:
Software networks
Evolutionary mechanisms
Modular attachment
Asymmetric probabilities
Power-law

a b s t r a c t

A modular attachment mechanism of software network evolution is presented in this
paper. Compared with the previous models, our treatment of object-oriented software
system as a network of modularity is inherently more realistic. To acquire incoming and
outgoing links in directed networks when new nodes attach to the existing network, a
new definition of asymmetric probabilities is given. Based on this, modular attachment
instead of single node attachment in the previous models is then adopted. The proposed
mechanism is demonstrated to be able to generate networks with features of power-law,
small-world, andmodularity, which representsmore realistic properties of actual software
networks. This work therefore contributes to a more accurate understanding of the evolu-
tionarymechanismof software systems.What ismore, explorations of the effects of various
software development principles on the structure of software systems have been carried
out, which are expected to be beneficial to the software engineering practices.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many large systems natural and man-made, such as WWW [1,2], science collaboration [3–5], social networks [6,7]
and transportation networks [8], have shown global statistical and evolutionary characteristics. Object-oriented software
systems represent one of the most diverse and sophisticated man-made systems; however, only little is known about the
actual structure and forming mechanism of large software systems. Although it is widely acknowledged that software
evolution depends on its architecture, the cause-and-effect relationships between design practices and evolution outcomes
have not been thoroughly investigated [9]. As a consequence, software networks research on analyzing and modeling
software systems as complex networks [10] can afford us deep understanding about the formation, evolution of code-based
software structures and the processes governing the development of software systems.

In recent years, many empirical studies have been greatly helpful for understanding the software systems. They
have uncovered that software networks, extracted from various software systems, follow power-law degree distributions
[11,12,10,13–17], represent small-world properties [10,18,19], exhibit community phenomena [10,20], and show some
other complex behavior characteristics [11,21–26]. Furthermore, many works have analyzed software systems in different
network scales by employing a variety of software networks, such as software motifs [27,28], package, class and
method collaboration graphs [21,29]. Obviously above-mentioned results have revealed a structure of clustering [19] and
modularity [20] in software networks [10]. Based on these works, research on software network evolution is emerging and
has attracted wide-spread attention. Some empirical studies [21,22,29–33] have identified and formulated some network
structural evolution laws which are obeyed by most of software systems, and these laws can be universally applied in
practices.

∗ Corresponding author. Tel.: +86 13609826177.
E-mail address: lih2002@126.com (H. Li).

0378-4371/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2013.01.035

http://dx.doi.org/10.1016/j.physa.2013.01.035
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physa.2013.01.035&domain=pdf
mailto:lih2002@126.com
http://dx.doi.org/10.1016/j.physa.2013.01.035


2026 H. Li et al. / Physica A 392 (2013) 2025–2037

On another research front, a few models of software network evolution, which describe the evolutionary mechanisms
from different perspectives, have been proposed. For instance, Myers [10] has proposed a model based on refactoring
processes. A model based on the growth of software patterns has been presented by He et al. [34]. Valverde et al. [27] have
put forward a model based on node duplication plus edges rewiring. Some other models have also simulated the process of
software network evolution from different perspectives (such as Refs. [26,35]). As one of the most popular and accepted
model for simulating scale-free network evolution, the Barabási–Albert (BA) model [11] is based on two mechanisms:
incremental growth and linear preferential attachment. On the basis of these, a novel nonlinear preferential attachment
mechanism has been presented by Krapivsky et al. [36]. Dorogovtsev and Mendes [37] have also proposed a model relying
on both the degree of the existing node and its age.Moreover, Zheng et al. [38] have proposed the Degree and AgeDependent
Adjustable Evolution (DAAE) model based on the above models for modeling software network formation.

While the above-mentioned models represent good performance on various aspects when modeling software network
evolution, there still exist some limitations of them, and the evolutionarymechanisms of software networks are also unclear.
On the onehand, aforementionedmodels are usually lack ofmodularity. In fact, software systems represent highly functional
modularity [10] in real-world software engineering, and this phenomenon has been confirmed in the community structure
of software networks [20]. As Fortuna et al. [30] have revealed, the modularity is increasing as software network evolves.
On the other hand, most of the previous models undertake undirected network treatment in software networks as some
complex networks such as Internet, social networks. Actually, software networks are inherently directed. That is because
dependent relations between basic units in software systems are unidirectional.

The above considerations motivate the study in this paper. A mechanism for evolution of software systems from a new
angle of view is proposed. In order to represent connectivity of the constituent in and out connections for classes, we extract
directed networks from software systems. Then, modular attachment instead of single node attachment obtained in the
previous models [10,34–38] is put forward, which is able to promote the emergence of structural modules within software
networks naturally. We also obtain asymmetric probabilities for incoming and outgoing preferential attachment, in order to
represent unidirectional dependent relations between classes. This mechanism of software network formationmay provide
a new angle for observing the organization of software systems.

The rest of this paper is structured as follows. After describing modular attachment model in terms of structure and evo-
lutionarymechanism in Section 2, we compare the simulations of thismodel with actual software networks and simulations
of twopreviousmodels in Section 3. In Section 4,we discuss implications of some software design principles for the structure
of software networks. In Section 5, the conclusion of this paper is presented and possible future works are proposed.

2. The mechanism of software network evolution

2.1. Software networks

A software system is composed of many interacting units (e.g., classes, components and subsystems) and the collabora-
tions among them directly reflect the design, coding, and execution of software.

Particularly, software interactions imply dependency relationships, in that some basic units need others in order to
carry out their assigned task. Thus the intention of software design and development is to ‘‘construct an optimal or near-
optimal system of dependency relationships, whereby core elements are reused in different contexts to perform recurring
fundamental tasks, with minimally constraining specializations added in higher functional layers in order to build upon or
combine those fundamental tasks’’ [10]. We can therefore define software network as N = {V , E}, where V = {v1, v2, . . .}
is the set of nodes which denote classes, interfaces and struts in software systems, and E = {ei,j, . . .} is the set of edges in
which ei,j : vi → vj represents dependency relationship from node vi to vj.

Specifically, class dependencies include two types of relations between classes: inheritance represents ‘‘is a’’ relation
and association represents ‘‘has a’’ relation. The direction of dependency relations reflects the flow of control in a software
system: an edge in a class collaboration graph is directed from class B to class A if B makes reference to A in its definition
(either through inheritance or association). In other words, the direction of the edges in software networks is determined
in the following manner: (a) it will establish an outgoing edge to an existing node if the corresponding class inherits that
class or use an instance of that class; (b) it will establish an incoming edge to an existing node if the corresponding class is
inherited by that class or its instance is used by that class. Repeated connections are not considered in the following analysis.

Each node is characterized by its degree ki, which is the number of edges attached to it. Additionally, in-degree kini and
the out-degree kouti for node vi are defined as the number of links entering the node and the number of links exiting the
node, respectively.

We choose 8 versions of Eclipse (version 2.0.1, 2.1.3, 3.0.1, 3.1.1, 3.2.2, 3.3.1.1, 3.4.2, 3.6.2) in time serial as empirical
cases in this paper. Eclipse is well-known and has large network size, and the number of nodes is from 6526 in version 2.0.1
to 21975 in version 3.6.2.

2.2. Software network growth

In terms of the software development process, iterative and incremental development iswidely applied under the banner
of agile development and lowers the risks and costs [39].



Download English Version:

https://daneshyari.com/en/article/10481271

Download Persian Version:

https://daneshyari.com/article/10481271

Daneshyari.com

https://daneshyari.com/en/article/10481271
https://daneshyari.com/article/10481271
https://daneshyari.com

