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a b s t r a c t

A new variational principle of steady states is found by introducing an integrated type of
energy dissipation (or entropy production) instead of instantaneous energy dissipation.
This new principle is valid both in linear and nonlinear transport phenomena. Prigogine’s
dream has now been realized by this new general principle of minimum ‘‘integrated’’
entropy production (or energy dissipation). This new principle does not contradict with
the Onsager–Prigogine principle of minimum instantaneous entropy production in the
linear regime, but it is conceptually different from the latter which does not hold in
the nonlinear regime. Applications of this theory to electric conduction, heat conduction,
particle diffusion and chemical reactions are presented.

The irreversibility (or positive entropy production) and long time tail problem in
Kubo’s formula are also discussed in the Introduction and last section. This constitutes
the complementary explanation of our theory of entropy production given in the previous
papers (M. Suzuki, Physica A 390 (2011) 1904 and M. Suzuki, Physica A 391 (2012) 1074)
and has given the motivation of the present investigation of variational principle.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction including the time derivative of entropy production and Gransdorff–Prigogine evolution criterion

In the recent series of papers [1,2] concerning irreversibility and entropy production in transport phenomena, the present
author has derived entropy production from the symmetric part (namely the second-order part, in the linear response
scheme [3,4]) of the density matrix described by the von Neumann equation [1]. It is crucial that irreversibility has been
deduced from the first principles based on the von Neumann equation with time reversal symmetry. This is a big contrast to
the derivation of transport coefficients using master equations on stochastic schemes with broken time symmetry (which
had been developed before Kubo’s theory [3,4]). Even the heat conduction has been shown [2] to be described by introducing
in this theory a thermal field ET ∝ gradT (r) for the temperature T (r) at the position r . A steady state with the current j is
maintained by energy supply and heat extraction. This mechanism has been formulated explicitly [2] by extending the von
Neumann equation.

Thus, one of long-term puzzles in non-equilibrium statistical mechanics has now been solved [1,2]. However, there
remain other difficult problems in this field:
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(i) To derive microscopically the Gransdorff–Prigogine evolution criterion [5–10], which was proposed a long time ago [5]
as a first step in the direction of a variational interpretation of nonlinear responses, and

(ii) to find a general principle of minimum entropy production which can be applied even to nonlinear transport
phenomena [5]. Prigogine [5] emphasized that to solve this second problem would be of much greater interest.

In order to study the first problem (i), we derive here a rigorous expression of the time derivative dσS(t)/dt of the entropy
production which is defined by [1,2]

σS(t) =


dS
dt


irr

=
d
dt

TrSρ(t) =
1
T

d
dt

TrH0ρsym(t) (1)

for the symmetric part ρsym(t) of the density matrix ρ(t):

ρsym(t) = ρ0 + ρ2(t) + · · · + ρ2n(t) + · · · . (2)

Here, ρ2n(t) denotes the 2n-th order term of ρ(t) in the external field F(t) defined by the Hamiltonian

H(t) = H0 − A · F(t) ≡ H0 + H1(t). (3)

The density matrix ρ(t) obeys the von Neumann equation

∂

∂t
ρ(t) =

1
ih̄

[H(t), ρ(t)], (4)

and the entropy operator S is defined by [1,2]

S = −kB log ρeq = (H0 − F0) /T ; F0 = −kBT log Tre−βH0 (5)

with ρ0 = ρeq at the temperature T . The above expression (1) yields the positive entropy production or irreversibility in
transport phenomena under the condition of positivity of the relevant transport coefficients [1,2].

When H1(t) is time-independent as in a static electric field, namely H1 = −A · F , we obtain a general expression of the
time derivative of the entropy production σS(t) as

d
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= −
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e
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=

F 2

T

 β

0
dλ⟨j(−ih̄λ)j(t; F)⟩0, (6)

where Ḣ1 = [H1, H0]/ih̄, j = Ȧ and

j(t; F) = e−
tH
ih̄ je

tH
ih̄ . (7)

For more details, see Appendix A.
The above general formula (6) is reduced to Kubo’s canonical current–current correlation function

d
dt

σ
(lr)
S (t) =

F 2

T

 β

0
dλ⟨ jj(t + ih̄λ)⟩0 ≡

F 2

T
C(t) (8)

in linear responses. Note that the time integration of Eq. (8) from t = 0 up to t = ∞ for a finite system vanishes
∞

0
C(t)dt =


∞

0
dt
 β

0
dλ⟨ jj(t + ih̄λ)⟩0 ∝ TrA[A, ρ0] = 0, (9)

as is well known [1,2,11]. Consequently, the expression (8) shows a characteristic behavior as shown in Fig. 1. This is called
the ‘‘long-time tail problem’’. For more details, see Section 5 and Appendix B.

This yields that

d
dt

σ
(lr)
S (t) ≤ 0 (negative long-time tail) (10)

for sufficiently large time t even in the infinite volume limit. This may correspond to Glansdorff–Prigogine’s stability
condition [5–9] near the steady state in the linear regime. Namely, this is consistent with the Onsager–Prigogine principle
of minimum entropy production which holds in the linear response regime.

The above argument does not hold in nonlinear cases. In fact, the ordinary theorem of minimum entropy production is
violated in nonlinear cases, as is well known [5–9]. Thus, we try in the present paper to find a new theory on the variational
principle of nonlinear transport phenomena. In order to solve this problem (ii), a new concept of ‘‘integrated’’ entropy
production is introduced. Some typical variational functions for this new principle are explicitly given by solving the inverse
problem of calculus of variations.
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