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a b s t r a c t

Statistical studies that consider multiscale relationships among several variables use
wavelet correlations and cross-correlations between pairs of variables. This procedure
needs to calculate and compare a large number of wavelet statistics. The analysis can then
be rather confusing and even frustrating since it may fail to indicate clearly the multiscale
overall relationship that might exist among the variables. This paper presents two new
statistical tools that help to determine the overall correlation for the whole multivariate
set on a scale-by-scale basis. This is illustrated in the analysis of a multivariate set of
daily Eurozone stock market returns during a recent period. Wavelet multiple correlation
analysis reveals the existence of a nearly exact linear relationship for periods longer than
the year, which can be interpreted as perfect integration of these Euro stockmarkets at the
longest time scales. It also shows that small inconsistencies between Euromarkets seem to
be just short within-year discrepancies possibly due to the interaction of different agents
with different trading horizons.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper extends wavelet methodology to handle multivariate time series (or, more generally, multivariate ordered
variables of two- or three-dimensional support such as spatial data). As their names imply, the wavelet multiple correlation
and cross-correlation try to measure the overall statistical relationships that might exist at different time scales among a
set of observations on a multivariate random variable.

The proposal is justified by noting how the alternative of using standard wavelet correlation analysis usually needs to
calculate, plot and compare a large number of wavelet correlation and cross-correlation graphs. In contrast, the proposed
wavelet multiple correlation, and similarly its companion wavelet multiple cross-correlation, consists in one single set of
multiscale correlations which are not only easier to handle and interpret but also may provide a better insight of the overall
statistical relationship about the multivariate set under scrutiny.

More specifically, the present methods are not just a more convenient way to establish the overall multiple relationships
but also they have important advantages over the usualwaveletmethods that use simple correlations and cross-correlations
between all possible pairs of variables. For example, in many wavelet studies where the relationships among several
variables are considered the wavelet correlation is used between pairs of variables (see Refs. [1–4] etc.) So if we have n
series then we would end up with n(n − 1)/2 wavelet correlation graphs and J times as many cross-correlation graphs,
where J is the order of the wavelet transform. This soon can be quite exhausting and confusing for the analyst who, at
the end, is faced with a very large set of graphs with potentially conflicting information.1 Conversely, the proposed single
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1 As an illustration of this we may note that a total of 55 wavelet correlations graphs and 440 wavelet cross-correlations graphs would be required for
the multivariate dataset analyzed in Section 6.
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wavelet multiple correlation and cross-correlation graphs will give the analyst a clearer indication about the type of overall
correlation that exists within the multivariate set at different timescales.

Besides this more correct assessment of the overall multivariate relationship, the proposed methods will also provide
protection against spurious detection of correlation at somewavelet scales obtained from simple pairwise comparisons due
to possible relationships with other variables within the multivariate set. Finally, we can also note that they provide certain
protection against the typical inflation of type I errors due to the experimentwise error rate [5, p. 617] when dealing with all
possible pairwise comparisons in a multiscale context.2

As a consequence of these advantages the present methods can provide more accurate results that allow for more
predictive interpretations of the data.

All this will be illustrated with the application of the proposed wavelet multiple correlation and cross-correlation in the
multiscale analysis of daily returns obtained from a set of eleven Eurozone stock markets during a recent nine year period.
In this relation, we may point out how correlation among European stock markets, as a measure of their integration, has
attracted quite some interest in the economic and financial literature, especially so ever since the creation of the European
Monetary Union (EMU) (see, e.g., Refs. [6–10] and others). However, none of these studies take into account the fact that
stock markets involve heterogenous agents that make decisions over different time horizons and operate on different time
scales [11–13, p.10]. On the other hand, the relatively large number ofmarkets to be analyzedmay render pairwisemultiscale
comparisons pointless in practice, which is the reasonwhy this type ofmarket analysis may find useful thewaveletmultiple
correlation and cross-correlation proposed here.

The paper is organized as follows. Section 2 defines the proposed wavelet multiple correlation and cross-correlation,
whilst Section 3 provides sample estimators for these quantities and establishes their large sample theory. Section 4 gives
approximate confidence intervals that can be used for estimation and testing purposes. Simulation results on the validity
of the previous results are presented in Section 5. Finally, Section 6 shows the empirical results and Section 7 presents the
main conclusions.

2. Definition

Let Xt = (x1t , x2t , . . . , xnt) be amultivariate stochastic process and letWjt = (w1jt , x2jt , . . . , wnjt) be the respective scale
λj wavelet coefficients obtained by applying the maximal overlap discrete wavelet transform (MODWT) [11,14] to each xit
process.

Thewaveletmultiple correlation (WMC)ϕX (λj) can be defined as one single set ofmultiscale correlations calculated from
Xt as follows. At each wavelet scale λj, we calculate the square root of the regression coefficient of determination in that
linear combination of variables wijt , i = 1, . . . , n, for which such coefficient of determination is a maximum. In practice,
none of these auxiliary regressions need to be run since, as it is well known, the coefficient of determination corresponding
to the regression of a variable zi on a set of regressors {zk, k ≠ i}, can most easily be obtained as R2

i = 1 − 1/ρ ii, where ρ ii

is the i-th diagonal element of the inverse of the complete correlation matrix P . Therefore, ϕX (λj) is obtained as

ϕX (λj) =


1 −

1

max diag P−1
j

, (1)

where Pj is the (n × n) correlation matrix ofWjt , and the max diag(·) operator selects the largest element in the diagonal of
the argument.

Since the R2
i coefficient in the regression of a zi on the rest of variables in the system can be shown to be equal to the

square correlation between the observed values of zi and the fitted valueszi obtained from such regression, we have that
ϕX (λj) can also be expressed as

ϕX (λj) = Corr(wijt , wijt) =
Cov(wijt , wijt)
Var(wijt)Var(wijt)

, (2)

where wij is chosen so as to maximize ϕX (λj) and wij are the fitted values in the regression of wij on the rest of wavelet
coefficients at scale λj. Hence the adopted name of ‘wavelet multiple correlation’ for this new statistic. Expression (2) will
be useful later in determining the statistical properties of an estimator of ϕX (λj).

It may also be interesting to point out how a multiple correlation statistic is known to be related to the first eigenvalue
of the correlation matrix, which indicates the (proportion of) variance of the variables accounted for by a single underlying
factor. In fact when all pairwise correlations are positive, this first eigenvalue is approximately a linear function of the
average correlation among the variables [15–17].

2 For example, doing all possible pairwise wavelet correlation significance tests for a givenwavelet scale at the nominal α = 5% significance level among
11 unrelated series (the same number as in the multivariate dataset analyzed in Section 6, i.e. 55 comparisons) would increase the overall chance of a Type
I error to 1 − (1 − α)55 = .94. That is, a huge 94% chance of finding a significant correlation at the given wavelet scale somewhere among those 55 tests
instead of the nominal 5%.
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