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a b s t r a c t

We study the performance ofmultifractal detrended fluctuation analysis (MF-DFA) applied
to long-term correlated and multifractal data records in the presence of additive white
noise, short-term memory and periodicities. Such additions and disturbances that can be
typically found in the observational records of various complex systems ranging from
climate dynamics to physiology, network traffic, and finance. In monofractal records,
we find that (i) additive white noise hardly results in spurious multifractality, but
causes underestimated generalized Hurst exponents h(q) for all q values; (ii) short-range
correlations lead to pronounced crossovers in the generalized fluctuation functions Fq(s) at
positions that decreasewith increasingmoment q, thus causing significantly overestimated
h(q) for small q and spurious multifractality; (iii) periodicities like seasonal trends (with
standard deviations comparable with the one of the studied process) result in spurious
‘‘reversed’’ multifractality where h(q) increases with increasing q (except for very short
time windows). We also show that in multifractal cascades moderate additions of noise,
short-range memory, or periodic trends cause flawed results for h(q) with q < 2, while
h(q) with q > 2 remains nearly unchanged.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many natural records characterizing the behavior of complex systems exhibit long-term persistence [1]. Prominent
examples include physiological rhythms [2–7], traffic dynamics in telecommunication networks [8–10], as well as
climatological [11–17] and financial [18–21] indicators. In these cases, the (linear) two-point autocorrelation function (ACF)
Cx(s) decays by a power law,

Cx(s) =
1

σ 2
x (L − s)

L−s−
i=1

(xi − ⟨x⟩)(xi+s − ⟨x⟩) ∼ s−γ , (1)

where σx denotes the standard deviation, ⟨x⟩ the mean, and γ the correlation exponent (0 < γ < 1) of the data set
xi, i = 1, 2, . . . , L. Such correlations are named ‘‘long-term’’ since the mean correlation time T× =


∞

0 Cx(s)ds diverges in
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the limit of an infinitely long series [22]. For (linearly) uncorrelated xi, Cx(s) = 0 for s > 0. If (linear) correlations exist up
to a certain correlation time s×, then Cx(s) > 0 for s < s× and Cx(s) = 0 for s > s×.

However, in many natural records a single scaling exponent is not sufficient for a full description of the correlation
structure of the data set, but rather an infinite number of exponents is needed [22–35]. This kind of data is usually referred
to as ‘‘multifractal’’, to distinguish from ‘‘monofractal’’ long-term correlated data characterized by a single scaling exponent.
This happens, for example, when values of different magnitudes follow different scaling laws.

Several methods have been established to quantify multifractal scaling in non-stationary observational records. Among
them, the wavelet transform modulus maxima (WTMM) method [36] and the multifractal detrended fluctuation analysis
(MF-DFA) [37] are currently themost prominent andwidely adoptedmethods, see [16,37,38] for comparisons. Bothmethods
can eliminate additional polynomial trends in the data which make them superior to other methods like the structure
function analysis [22] and the high-order autocorrelation functions [39]. Herewe focus onMF-DFA [37] since it yields similar
results as the WTMM but is considerably easier to implement.

In the MF-DFA one considers the profile, i.e., the cumulated data series Yj =
∑j

i=1(xi − ⟨x⟩), and splits it into Ls (non-
overlapping) segments of size s. In each segment a local polynomial fit yν(j) of the profile of, e.g., second order is estimated.
Then one determines the variance F 2

ν (s) =
1
s

∑s
j=1(Y[(ν−1)s+j] − yν(j))2 between the local trend and the profile in each

segment ν and determines a generalized fluctuation function Fq(s),

Fq(s) ≡


1
Ls

Ls−
ν=1

[F 2
ν (s)]q/2

1/q

. (2)

When q = 0, logarithmic averaging can be applied (for a detailed description, see Eq. (6) and discussions on p. 90 of [37]).
In general, Fq(s) scales with s as

Fq(s) ∼ sh(q) (3)

with the generalized Hurst exponent h(q). For a monofractal time series, h(q) is independent of q and identical to the Hurst
exponent H (see, e. g., [22]). For multifractal data, h(q) depends on the chosen moment q. When the record is linearly long-
term correlated (see Eq. (1)), h(2) = 1 − γ /2. In the absence of linear correlations (where Cx(s) = 0 for s ≥ 1), h(2) = 0.5.
In [37] it was shown that h(q) is directly related to the scaling exponent τ(q) defined by the standard partition function-
based multifractal formalism [25,39], via τ(q) = qh(q) − 1, and is related to the multifractal spectrum f (α) via a Legendre
transform f (α) = q[α − h(q)] + 1, where α = [dτ(q)/dq].

Observational data often contain ‘‘artifacts’’ that make it difficult to detect and to quantify long-term correlations and
possible multifractality. There are several types of such ‘‘artifacts’’.

1. Additive random noise. One prominent example can be found in physiological records, in particular in heartbeat
intervals, where the random component is inherent in the measured process itself [40,41]. Here the noise component is
informative and can be used to detect fibrillation [40]. Another possibility is the measurement noise that occurs due to the
limited accuracy of the measurement equipment [42].

2. Short-term correlations. Prominent examples are temperature records [14,43,44] where on short time scales below 10
days there is a strong persistence which is superimposed to the long-range correlations.

3. Additional periodicities. Prominent examples can be found in climate records, where seasonal trend overlap long-term
correlation effects. In mass service systems like computer and highway networks, periodicities originate from working and
entertainment patterns (weekdays, holidays) and often result in several kinds of trends (daily, weekly, annual). For a recent
study of seasonal trend impact on nonlinear memory in climate records, we refer to [45].

In this paper, we study how these artifacts: (a) when superimposed to long-term correlated record, give rise to spurious
multifractality, and (b) when superimposed to a multifractal record, corrupt the multifractality.

2. Spurious multifractality in monofractal data sets

For generating long-term correlated data, we have used the Fourier-filtering technique, described, e.g., in [22,46], where
the spectral coefficients of an uncorrelated random series are multiplied by f −(1−γ )/2. The series, obtained by the inverse
Fourier transform of these modified coefficients, exhibits power-law correlations on all time scales.

2.1. The impact of additive white noise

First, we consider the results of the multifractal analysis by MF-DFA in the presence of additive white noise. For
corresponding detailed studies with normal DFA (just q = 2) we refer to [47]. The data sets are

yn = xn + Aun, (4)

where xn is a long-term correlated series, un is a white noise series (both characterized by zeromean and unit variance), and
A defines the noise level. Throughout the whole paper, we estimate h(q) by fitting a power-law to Fq(s) for each value of q
by the least mean square technique with the scale range between s = 103 and 104 for 100 data sets of length L = 216.
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