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h i g h l i g h t s

• We investigate the influence of population density on the evolution of cooperation.
• We analyze the role of increasing neighborhood size in the promotion of cooperation.
• The optimal population density exists in the pair-wise game model.
• The intermediate neighborhood size is fittest for the evolution of cooperation.
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a b s t r a c t

We investigate the evolution of cooperative behaviors with increasing neighborhood size
on diluted lattices. For three typical pairwise game models which include prisoner’s
dilemma, snowdrift and stag hunt games, all numerical results indicate that cooperation
can persist or emerge around the optimal population density which is dictated by the per-
colation threshold on the square lattice. Meanwhile, the neighborhood size determines the
interaction ranges of focal players and then dominates the percolation threshold, and ex-
tensive numerical simulations demonstrate that the intermediate neighborhood size is the
most beneficial to the evolution of cooperation in the current lattice setup. The current
findings can help to deeply understand the sustenance and emergence of collective coop-
eration in many natural, social and economic systems.

© 2013 Elsevier B.V. All rights reserved.

Q2

1. Introduction 1

In recent years, understanding collective cooperation has become an interdisciplinary challenging task within the sci- Q3 2

entific communities [1,2] which include biology, mathematics, physics, engineering and social sciences etc. Among them, 3

evolutionary game theory has laid out a solid foundation for us to analyze the evolution of cooperation [3–5]. Starting from 4

this theoretical framework, various microscopic mechanisms are presented to explore the potential origins of cooperation 5

between unrelated individuals. For example, kin selection [6], direct or indirect reciprocity [7,8] and group selection [9] have 6

been found to be effective means to promote cooperative behaviors. In addition, some extra methods are also put forward 7

to interpret the ubiquity of cooperation, such as reward and punishment [10], voluntary participation [11,12], individual 8

reputation [13], conditional strategy [14], age structure [15–17], strategy imitation [18] or success-driven distribution [19], 9
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and so on. Meanwhile, various game techniques are also utilized as theoretical tools to analyze the price-determining rule1

under economical and financial environments [20,21].2

However, extensive works focus on the role of game behaviors or microscopic mechanisms in the evolution of coopera-3

tion, and the interaction pattern among individuals or the macroscopic structure in the whole population is neglected, and4

is often hypothesized to be well-mixed. In particular, beyond the well-mixing hypothesis, Nowak and May [22] seminally5

investigated the game behavior and spatial chaos among a populationwhere players are allocated on the square lattice. They6

found that the spatial structure of the lattice helps the cooperators to build cooperative clusters, and then protects them from7

being invaded by defectors. Inspired by this pioneering work, many authors integrate large quantities of mechanisms into8

the spatial lattices to discuss the evolution of cooperative behaviors in a colony, such as environmental influences [23–25],9

weight distribution [26–29], individual mobility [30–34], learning and teaching activities [35–37], memory effect [38], as-10

piring to the fittest payoff [39,40], noise-induced enhancement [41], and so on. Nevertheless, regular topology is still far11

from the topological structure embedded in many real-world systems which often exhibit complex topology properties12

comprising the small-world effect and scale free degree distribution [42]. Exploring the cooperative behaviors on complex13

networks or graphs has become an active topic in the physics community [3–5], and Santos et al. [43,44] indicated that the14

high degree nodes (i.e., hub nodes) in complex networks have adaptive advantages for cooperators and organize into giant15

cooperative clusters against the employment of defectors, leading to a dramatic going up in the level of cooperation. Espe-16

cially in heterogeneous scale-free networks, a single cluster containing the most connected individuals is always formed to17

favor the cooperators in the prisoner’s dilemma game [45]. Furthermore, the topologymay adapt as the cooperation evolves,18

and thus coevolutionary behavior between the network and game cooperation also attracts the attention of researchers in19

many scientific fields [46].20

In the typical framework of evolutionary game theory, the pairwise interaction game model is often used to investigate21

the cooperative behaviors under natural and social environments. Generally, in a simple pairwise game model, individuals22

often take two distinct strategies, to cooperate (C) or defect (D), and simultaneously make a decision during the game pro-23

cesses. Two players will both receive the reward (R) if they decide to cooperatemutually, but suffer from the punishment (P)24

due to mutual defection. The cooperator will get the sucker’s (S) payoff and their opponent will obtain the temptation (T ) to25

defect if two players choose different strategies. Depending on the payoff ranking order [1,2], various pairwise models can26

be implemented, such as the prisoner’s dilemma game (PDG) if T > R > P > S, the snowdrift game (SDG) if T > R > S > P27

and the stag hunt game (SHG) if R > T > P > S. Most previous works often assume that each site on a square lattice or28

complex network can contain at least one player, but in some cases the node position cannot be held by any player. Among29

them, Vainstein and Arenzon [47] first studied the robustness of cooperation in heterogeneous ecosystems in a spatial PDG30

model by considering site diluted lattices, and they demonstrated that the fraction of cooperators is enhanced due to dis-31

order, and a dynamical transition separating a region with spatial chaos from a region with localized stable cooperative32

clusters emerges. Then, Wang et al. [48,49] again noticed this fact and studied the evolution of cooperation on sparse lat-Q433

tices, and found that the percolation threshold determines the optimal population density in spatial evolutionary games.34

But they only used a lattice with von-Neumann neighborhood (4 nearest neighbors). In addition, Ref. [50] also discusses35

the effect of group size on the cooperation behaviors among agents, but it is only based on the spatial public goods game36

and the influence of group size on the evolution of cooperation deserves to be further explored. In this paper, we combine37

our works on increasing neighborhood [51–53] with sparse lattices to further investigate the role of population density and38

increasing neighborhood in the evolution of cooperation on diluted lattices.39

The rest of this paper is organized as follows. In Section 2, the game model with increasing neighborhood on diluted40

lattices is briefly introduced. Extensive numerical simulations are performed in Section 3, and the role of population density41

and increasing neighborhood is discussed in detail. Finally, the concluding remarks are given in Section 4.42

2. Game model with increasing neighborhood on diluted lattices43

In this work, we assume that each site on a square lattice can at most contain one player, that is, the actual number ofQ544

players Nact may be less than N = L2 and some sites are empty during the process of evolution of cooperation. Initially, Nact45

(< N) players are randomly distributed on the square lattice, and the population density or the effective fraction of players46

can be defined as follows: ρ = Nact
N =

Nact
L2

, and the remaining sites (1 − ρ) are vacant. Then we will consider the pairwise47

game model on diluted square lattices, such as the prisoner’s dilemma game, the snowdrift game and the stag-hunt game,48

which depends on the ranking order in the payoff matrix. For simplicity, we try to reduce the complexity of the gamemodel49

and employ a payoff matrix with only one parameter in all these three gamemodels. For example, we choose the weak PDG50

model introduced byNowak andMay [22], that is, T = b > 1, R = 1 and P = S = 0, to investigate the cooperative behaviors51

of the PDG which almost captures all behaviors of a strict PDG although this model is only the boundary game between the52

strict PDG and SDG described in Ref. [54]; For the snowdrift game, we take T = 1 + r , R = 1, S = 1 − r and P = 0 in53

which 0 < r < 1 is the only parameter indicating the cost-to-benefit of cooperation. Meanwhile for the stag-hunt game,54

we can also use the normalized form: T = r , S = −r , R = 1 and P = 0 where r has the same implication and value ranges55

as the SDG. In addition, each player can only adopt one of two possible strategies: cooperation (si = C = 1) or defection56

(si = D = 0) in these three games.57

After the initialization, wewill perform aMonte Carlo simulation (MCS) according to the following elementary step. First,58

a randomly selected agent i calculates its payoff pi by playing the game with its possible k neighbors, in which k can be set59
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