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h i g h l i g h t s

• We study threshold models of social influence on empirical temporal datasets.
• The cascade dynamics of the model is sensitive to the temporal-network structure.
• For most datasets and parameter values, temporal patterns facilitate cascades.
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a b s t r a c t

Threshold models try to explain the consequences of social influence like the spread of
fads and opinions. Along with models of epidemics, they constitute a major theoretical
framework of social spreading processes. In threshold models on static networks, an
individual changes her state if a certain fraction of her neighbors has done the same.When
there are strong correlations in the temporal aspects of contact patterns, it is useful to
represent the system as a temporal network. In such a system, not only contacts but also
the time of the contacts are represented explicitly. Inmany cases, bursty temporal patterns
slow down disease spreading. However, as we will see, this is not a universal truth for
threshold models. In this work we propose an extension ofWatts’s classic thresholdmodel
to temporal networks. We do this by assuming that an agent is influenced by contacts
which lie a certain time into the past. I.e., the individuals are affected by contacts within
a time window. In addition to thresholds in the fraction of contacts, we also investigate
the number of contacts within the time window as a basis for influence. To elucidate the
model’s behavior, we run the model on real and randomized empirical contact datasets.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

An important socio-economic mechanism is social influence—the spread of opinions and beliefs from the social
surrounding to an individual. This type of process can be modeled as a threshold process—if the fraction of neighbors in
a static network exceeds a threshold, then the focal vertex changes state. In his pioneering work from the 1970’s, Mark
Granovetter [1] pointed out that social collective behavior could be divided into processes depending on credulity (including
threshold models) or vulnerability (like disease-spreading models). A recent, theoretically important development was
made in Ref. [2], where Duncan Watts proposed a threshold model that is analytically tractable on networks. The
study highlights effect of network structure on cascade sizes. Some other studies have tried to bridge the two classes—
compartmentalmodels and thresholdmodels [3]. One of the key findings ofWattswas that network structure affects cascade
processes [2,4]. Another dimension that has been shown to be important for social spreading phenomena is the timing of
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contacts [5]. For this reason it makes sense to model social contact patterns as temporal networks [6]. This is a term for
network representations where the explicit time of contacts is included. In this paper we extend Watts’s cascade model to
temporal networks.

Watts’s cascademodel assumes that an actor can switch between two states. It is a deterministic, non-equilibriummodel
of a cascade where actors can change to a new state but not back to the previous one. In the original model an actor is
continuously influenced by its surrounding. In contrast, in a temporal network, there is no fixed surrounding in time. One
has to decide what time into the past an actor can be influenced by its contacts. In our model, we integrate the influence
from contacts over a time window. Our model is thus both taking into account the chronological order of events and the
period a contact that can influence an actor. Outside the time window, communication does not influence individuals. This
is to say that for social influence, communications in the past can be forgotten or become unimportant as time passes by.

We will use empirical temporal-network data as a substrate to run our model on. We compare our results to those of
randomized versions of the original data. The results are compared to static and temporal structuralmeasures characterizing
the temporal network.

2. Methods

The type of data we consider in this paper are sets of triples (i, j, t), or contacts, which means vertices i and j have been
in contact at time t . Let V be the set of N vertices, E the set of M edges (pairs of vertices that occur in at least one contact),
and let C be the set of all Γ contacts.

We assume a system of vertices with one-to-one communication over edges (pairs of vertices connected at least at one
point in time). The interaction is considered bidirectional in the sense that both vertices in contact can influence one another.
Each edge has a list of time stamps representing the times of communication events.We assign a binary value to each vertex
representing its current statewith respect towhatever spreads through the network. The population is initialized in the state
0 except one random vertex that is assigned state 1. We then study the spread of state 1 in the network. We call state-1
vertices adopters and state-0 vertices non-adopters. The term adopters comes from that early threshold models often sought
to capture the spread of new technology [7].

When we simulate the model, we follow the set of contacts in time order and let each contact be an opportunity for the
vertices to change state. Vertices are influenced by their contacts within a finite time window from time θ in the past to the
present. In other words, at time t , a node base its decision to change state, or not, on contacts within the interval

[t − θ, t). (1)

Let fi be the fraction of contacts between i neighbors of state 1 within the time window. In our fractional-threshold model,
if fi ≥ φ the vertex i will stay in state 1 for the remainder of the simulation. The reason that the agents remain in state
1 indefinitely is to conform to Watts’ model. Watts motivate this choice by it making the model maximally simple (and
analytically tractable) that is still capturing threshold behavior as amechanism behind cascades in social networks. A similar
setup is seen in disease spreading models where in e.g. the SI and SIR models agents cannot return to their original states. In
addition to the fractional-threshold model, we consider another version where the agents respond to an absolute number Fi
of interactions with state-1 neighbors. The state changes if Fi ≥ Φ [8,9] (we call this version the absolute-threshold model).

In Fig. 1, we give an illustrative example of themodel. We use a time-line representation of a temporal network. Contacts
between individuals are illustrated by arcs. Red circles indicate adopters, white or gray circles indicate non-adopters. The
threshold here is assumed to be φ = 0.5 and the time window θ = 10. As time progresses, the time window slides through
each contact and updates vertices with respect to the contacts within the time window. In panel (a), vertex d does not
change its state even though it is in contact with an infected vertex. At another time—see panel (b)—vertex d changes its
color because inside the time window the fraction of red neighbors exceeds the threshold.

We simulate the model on six empirical temporal networks. The statistics we will present are averaged over at least 100
independent simulation runs.

3. Empirical datasets

We test our model on six empirical datasets generated by different types of human interactions. The datasets were
obtained with all individuals anonymized to protect their identity. The first dataset consists of self-reported sexual contacts
from a Brazilian online forum where sex-buyers rate and discuss female sex-sellers [10]. The second dataset comes from
email exchange at a university [11]. It was used in Ref. [12] to argue that human behavior often comes in bursts. The third
dataset was collected at a three-days conference from face-to-face interactions between conference attendees [13]. The
fourth dataset comes from a Swedish Internet dating site where the interaction ranges from partner seeking to friendship
oriented [14]. The fifth and sixth datasets come from a Swedish forum for rating and discussing films [15]. One of these
datasets represents comments in a forum that is organized so that one can see who comments on whom. The other datasets
comes from email-likemessages. Table 1 summarizes details of the datasets such as number of vertices, number of contacts,
sampling time and time resolution. Some of the datasets like themovie forum, the email and the conference contacts can be
an underlying structure for social influence, spread of fads and ideas, or computer viruses. The Sexual-contact datasets and
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