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Abstract

The time evolution of complex systems usually can be described through stochastic

processes. These processes are measured at finite resolution, which necessarily reduces them to

finite sequences of real numbers. In order to relate these data sets to realizations of the original

stochastic processes (to any functions, indeed) it is obligatory to choose an interpolation space

(for example, the space of band-limited functions). Clearly, this choice is crucial if the intent is

to approximate optimally the original processes inside the interval of measurement. Here, we

argue that discrete wavelets are suitable to this end. The wavelet approximations of stochastic

processes allow us to define an entropy measure for the order–disorder balance of evolution

regimes of complex systems, where order is understood as confinement of energy in simple

local modes. We calculate exact results for the fractional Brownian motion (fBm), with

application to Kolmogorov K41 theory for fully developed turbulence.
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1. Introduction

Many physical systems investigated at present have a complex evolution in time.
Frequently, the major information we can obtain on their dynamics comes from time
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series of noisy appearance [1–5]. These series are samples at finite resolution of
subjacent stochastic processes, whose properties are better investigated through a
multi-resolution approach, because the realizations of the mentioned stochastic
processes are singular everywhere functions. This is, for example, the case of 1=f a

noises from self-organized systems [6–10]. Thus, singularities are common, and
should be interpreted as details that influence function variation at all scales [11,12].
In this paper we propose a method for entropy analysis of arbitrary complex time
series that takes advantage of this theoretical standpoint. Moreover, we account for
the fact that measurements are made at finite resolution, considering the
consequences of sampling, what is not fully accomplished in previous approaches.
In general, other formulations are strongly influenced by information–theoretical
arguments, applied to the analysis of chaotic behavior [13]. We see difficulties in
two main aspects. First, the notion of complexity that is employed in these
formulations is based on entropy rates, like the Kolmogorov–Sinai entropy, which
measures the degree in which information on initial conditions is lost when the
systems evolve. This gives a scale of complexity ranging from zero (non-chaotic
deterministic case) to infinite (stochastic case). In this scale, finite values quantify the
complexity of deterministic chaos. As a consequence, the problem of defining a
proper complexity estimator for stochastic processes is substituted by the statistical
investigation of chaotic deterministic dynamical systems [14]. Second, these
formulations do not consider the relationship that scaling has with disorder [15].
Our approach is tailored to face these difficulties. Here, we begin by assuming that
the stochastic processes are supported on the real axis, and measured at a discrete set
of points with a sampling interval t, during a time T . The resolution of the
measurement is N ¼ T=t, and for convenience we make T ¼ 1 and t ¼ 1=N ¼ 2�J

(we will work in these units). Such measurement results in a loss of information,
which depends on two factors: the resolution, and the interpolation space in
which the stochastic processes will be projected [16]. The idea is that the
mere sampled values say almost nothing about a function. Much more information
is conveyed through the hypothesis on how the function varies between the
sampled values.This regularity hypothesis, usually implicit when we draw smooth
curves between data points, is an essential element of the theory. Without this
hypothesis, no information found on the discrete and finite data sets can be
attributed to the subjacent model, that is assumed to hold on the continuous
support. Now, in the time-scale (time–frequency) domain, it makes sense to search a
representation (i) that is minimally affected by the created end singularities, (ii) that
provides an interpolation based on multi-scale approximation of the actual
singularities, and (iii) that deals with the resolution N as a direct experimental
parameter. The first and second requirements are the most crucial, and establish
the way in which the energy (L2-norm squared) is assumed to be distributed
inside the interval of measurement, so that this distribution corresponds to the
singularity structure of the process, seen at a finite resolution. As a supplementary
condition, the best is that the algorithmic complexity grows only linearly with the
length of the time series. These requirements are met if we project the stochastic
processes in a discrete wavelet space.
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