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a b s t r a c t

A Markovian probabilistic cellular automaton with the capability to capture the essential
phenomenology of coalescence and break-up processes in the presence of external
agitation is introduced. The existence of homogeneous stationary states of themodelwhich
admit large cluster formation for a range of agitation speeds is analytically predicted by
mean field calculations. Through mean field analysis it is possible to obtain formulas that
link experimental and model parameters on the base of simple measurable quantities.
In this way, the experimental conditions for which a desirable stationary particle size
distribution should be expected can be derived.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Aggregation and breaking mechanisms are present in several fields like colloidal chemistry, polymer science, magnetic
nanoparticle suspensions and wastewater treatment, among many others [1–5]. The usual framework to deal with these
processes is given by the aggregation–fragmentation equation [6,1], which is a particular case of the Smoluchowski rate
equation,
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Eq. (1) describes the evolution of cluster density with size n, ρn, in terms of the aggregation kernel Ki,j (which gives the
aggregation reaction rate of an i-mer with a j-mer) and the fragmentation kernel Fi,j (which models the break-up of a
(i + j)-mer into an i-mer and a j-mer). It should be remarked that Eq. (1) is a mean field description, which gives no
information regarding spatial dependencies or fluctuations. The study of the mathematical properties of Eq. (1) is an active
research area [7,8]. Due to the lack of general solutions for the aggregation–fragmentation equation, the analysis of cases of
particular interest and the development of simulation techniques are valuable [9–11]. In the pure aggregation case (F = 0)
no stationary solutions of Eq. (1) exist giving rise to a single cluster at infinite times with its statistical properties depending
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on K . When F > 0 stationary states can emerge. We are interested in kernels that are influenced by an external agitation
speed. Our motivation is wastewater treatment, where it is common to use chemicals that once mixed with wastewater
promote the aggregation of the suspended solids into particles large enough to settle or be removed (flocculation) [12,13].
An agitation may improve the floc formation but also promote instabilities that may fracture the clusters. A fundamental
interest in such an application is to find a range of experimental conditions (agitation speeds and times) for which the
resulting particle size distribution has some desirable shape. The situation at hand can be modeled in a tractable way by
introducing an instability threshold h̄. The existence of such a threshold is physically justified by empirical observations and
allows the definition of simple, yet meaningful, kernel structures. We show that by recasting the variables ρ with respect to
h̄, it is possible to obtain a version of the aggregation–fragmentation equation fromwhich a complete analytical description
of the stationary states is possible. From this analytical description, relations between the actual experimental parameters
and statistical properties of interest can be obtained.

2. The model

Our starting point is a conceptual cellular automaton model which considers the spatial distance between clusters and
fluctuations. This model derives a mean field description.

The cellular automaton is defined on a one dimensional lattice with periodic boundary conditions. Associated with any
cell j in the lattice is a state variable hj, that is interpreted as an abstract floc size. The state in a cell can change by any integer
value from iteration to iteration following a set of local rules. The integer units are called particles. The rules that dictate the
particle movement in the lattice depend on the average floc size, defined as follows. At an initial stage, M particles are
distributed over the N sites of the lattice, giving an average floc size h̄ = M/N . The subsequent evolution of the automaton
is given by the following rules.

• If hj ≤ h̄ then, with probability 1 − v, the cell remains unchanged, and with probability v receives particles from its
neighboring cells (from j − 1, j + 1, or both).

• On the other hand, if hj > h̄ then, with probability f (1 − v), the j-th cell receives particles from its neighboring cells
(from j− 1, j+ 1, or both), and with probability 1− f (1− v) transfers the excess particles (above average) to any of the
neighboring cells j − 1 or j + 1.

The decisions that involve transfer of particles to hj from its neighbors (which neighbors give particles), are taken at
random from uniform distributions. The parameter v represents the degree of instability of large clusters: as v → 1 only
the flocswith sizes belowor equal to the average are stable. The parameter f , on the other hand, acts like a stabilization factor
for large aggregates: depending on f it ismore or less probable that a large floc grows in a given site fromone time step to the
next, at v < 1. The stability threshold is chosen like the average h̄ on the basis of the following experimental observation. At
very large agitation speeds, highly stable clusters of minimal mesoscopic sizes are dominant. Mass conservation is assumed
in our model, so the threshold definition in terms of h̄ follows from the identification of v = 1 with the maximum agitation
speed limit.

The cellular automaton represents situations in which the experimental control parameters are fixed, hence its rules are
in terms of constant rates (f and v). It should be remarked, however, that the automaton’s rules imply local fluctuations
on the particle transport, which depends on the relative size of the cluster on any given site j with respect to the stability
threshold.

The main interest is the particle size distribution, in the sense of the dimensionless mean field Eq. (1). As a first step we
propose in this work the simple 1-d model stated above, expecting to capture essential interactions that give rise to sound
mean field equations. Generalizations to larger dimensions are expected to be explored in the future.

It is now shown by amean field analysis that homogeneous stationary states with a positive probability of floc formation,
with sizes larger than h̄, can evolve from the proposed evolution rules. The following definitions are required:

• ∆hj = hj − h̄ ≡ deviation from the average number of particles at site j,
• state +: ∆hj > 0, state −: ∆hj ≤ 0,
• P+

j (t) ≡ Pt(∆hj > 0), P−

j (t) ≡ Pt(∆hj ≤ 0),
• v ≡ P(+ | −): transition probability − → +,
• b = f (1 − v) ≡ P(+|+): transition probability + → +,

with, respectively, the positivity P±

j (t) > 0 and normalization conditions P+

j (t) + P−

j (t) = 1, for any time and site,
respectively.

We now consider a coarse grained approach in which the size of each aggregate fluctuates due to a mean field which
results from the superposition of external system fields and the electrical mean field from other aggregates in the system,

P+
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