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a b s t r a c t

In this paper, a mode of using the Dynamic Renormalization Group (DRG) method is
suggested in order to cope with inconsistent results obtained when applying it to a
continuous family of one-dimensional nonlocal models. The key observation is that the
correct fixed-point dynamical system has to be identified during the analysis in order
to account for all the relevant terms that are generated under renormalization. This is
well established for static problems, however poorly implemented in dynamical ones. An
application of this approach to a nonlocal extension of the Kardar–Parisi–Zhang equation
resolves certain problems in one-dimension. Namely, obviously problematic predictions
are eliminated and the existing exact analytic results are recovered.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fluctuating surfaces appear in a wide variety of physical situations and have been of great interest in the past two
decades [1–3]. These and other systems far from thermal equilibrium pose a major challenge in contemporary statistical
physics. Behavior out-of-equilibrium is far richer than at equilibrium, andmany intriguing scaling phenomena, such as self-
organized criticality [4], or phase transitions between non-equilibrium stationary states [1], have been observed for long.
However, despite the considerable achievements, the theoretical comprehension of non-equilibrium phenomena remains
much poorer than our understanding of equilibrium phenomena.

The Renormalization Group (RG), proven useful to explain universality in equilibrium continuous phase transitions, has
also allowed some progress in understanding systems out-of-equilibrium. Nevertheless, in many cases the information RG
analysis offers in not complete and limited to a certain range of dimensions. A classical example is the Kardar–Parisi–Zhang
(KPZ) equation [3] where the Dynamic Renormalization Group (DRG) approach agrees with the analytic exact result in
one dimension [1] but unable to provide results for the strong coupling phase in higher dimension. This clearly indicates
that internal problems exist in the DRG calculation for d > 1. Actually, a remarkable result of Wiese [5] shows that the
shortcoming of DRG in the KPZ system is not an artifact of a low order calculation (so called ‘‘one loop’’ calculation), but
rather intrinsic to the method and extends to all orders. This situation motivated the development of other methods to deal
with the KPZ system such as a scaling approach [6], Self-Consistent Expansion (SCE) [7], Mode-Coupling [8] and others that
were able to provide predictions for the exponents in more than one-dimension.

A decade ago, a family of nonlocal growth models has been introduced in Ref. [9], known as the Nonlocal KPZ (NKPZ)
equation, to account for nonlocal interactions in a system of deposited colloids, giving rise to roughness larger than the one

∗ Tel.: +44 20 7848 2864; fax: +44 20 7848 2017.
E-mail address: eytan.katzav@kcl.ac.uk.

0378-4371/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2013.01.010

http://dx.doi.org/10.1016/j.physa.2013.01.010
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.physa.2013.01.010&domain=pdf
mailto:eytan.katzav@kcl.ac.uk
http://dx.doi.org/10.1016/j.physa.2013.01.010


E. Katzav / Physica A 392 (2013) 1750–1755 1751

predicted by the classical KPZ case. The authors studied thewhite noise case thatwas later generalized to spatially correlated
noise in Ref. [10]. To be more specific, the equation they studied was
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where d is the substrate dimension and D0 specifies the noise amplitude. Note that in the limit ρ → 0 the local KPZ
equation is recovered. This model suggests that the growth at each point r⃗ gets contributions from pairs of gradients at
points symmetrically located around r⃗ along the interface, namely ∇h(r⃗ ± r⃗ ′), with a weight that is a decreasing function
of the distance between them.

Both papers [9,10] have investigated this problem using the Dynamic Renormalization Group (DRG) approach, and have
derived a complex phase diagram. Focusing on the strong coupling solution (in the KPZ sense [1,3]) both papers have found

z = 2 +
(d − 2 − 2ρ) (d − 2 − 3ρ)

(3 + 2−ρ) d − 6 − 9ρ
, (3)

where z is the dynamic exponent. The roughness exponent, α, characterizing the long distance spatial behavior, is obtained
using the modified Galilean scaling relation α + z = 2 − ρ. Unfortunately, the DRG result for the exponents, summarized
in Eq. (3) above, was found to be inconsistent with an exact inequality in a certain range of the parameters and in all
dimensions [11]. It is in place to comment here on the possible violations of the modified Galilean scaling relation, in view
of recent criticisms of the relation between Galilean invariance and the scaling relation in the original KPZ system [12–14].
This may be especially relevant for discretized versions of Eq. (1) (see Ref. [14]) and less so in the continuum limit, which is
the main focus of this paper.

Interestingly, another nonlocal extension of the KPZ equation has been studied in the literature [15,16], namely
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This model also recovers the standard KPZ equation in the limit ρ → 0, but suggests that the growth at every point r⃗
comes from the contribution of the gradients at all the points on the interface with a relative weight that decreases with the
distance to r⃗ . This is different from Eq. (1) in that the nonlinearity contributes to growth via the local interaction with all the
other points on the interface, and not just pairs of points symmetrically distributed around it.

It turns out that this model enjoys an exact result in 1D [15] predicting z = (3 − 3ρ)/2 when ρ = 2σ . It also
happens that the same scaling relation α + z = 2 − ρ holds here, from which the roughness exponent α could be worked
out. A more systematic study using the Self-Consistent Expansion [16] agrees with the exact result when applicable, and
provides predictions for the exponents in other dimensions as well. On physical grounds this seems to be a simpler nonlocal
extension of the KPZ nonlinearity than that of Eq. (1), and therefore worthwhile understanding when modeling systems
with long-range interactions. This simplicity is reflected in the fact that the nonlinear term in Eq. (4) is more ‘‘relevant’’ (in
the Renormalization Group sense) than the one in Eq. (1), as will be seen below. The interesting thing is that the scaling
dimension of the linear and nonlinear terms does not coincide in this equation, and this hinders the direct application of the
perturbative Renormalization Group analysis. A key observation made in the SCE analysis [16], and which will be helpful
for the DRG analysis as well, is that super diffusive modes of relaxation are generated by the nonlinearity of Eq. (4), namely
super diffusion modes. This suggests that a remedy should be sought going back the old Renormalization idea of identifying
first the right fixed point dynamical system around which the expansion should be. The fixed point dynamical system is not
necessarily of the same form as the original system, as is implicitly assumed by the standard DRG procedure. That terms not
included in the original action can be generated under the renormalization group has been known from the very beginning
of the renormalization group, and was taken into account in static problems [17–19]. However, this is often overlooked in
dynamical problems.

In this paper, amodification of the standard DRG procedure that goes along those lines is suggested. This approachmakes
DRG more flexible, and succeeds in recovering the exact result for the case of the NKPZ Eq. (4). Not less important, this
approach could be useful in implementing DRG in other situations where long-range interactions are present, such as those
appearing in the context of hydrodynamic interactions in colloidal suspensions [20,21], nonequilibrium fluctuations of an
interface under shear [22], wetting of an amorphous solid by a liquid [23,24] and in in-plane tensile crack propagation in a
disordered medium [25,26]. The main motivation here is to make the first step towards extending the range of applicability
of DRG in a field that suffers anyway from a lack of analytical tools, in order to allow further progress in systems out-of-
equilibrium.
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