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a b s t r a c t

In this paper, diffusion behavior of Brownian particles moving in a 1D periodic potential
landscape has been theoretically investigated by using the general quantum Langevin
equation. At first, in the condition of weak disorder, some anomalous diffusive behaviors
have been revealed in the process. Then, two types ofmean square displacement, ensemble
averaged and time averaged mean square displacement, have been investigated in a long
time, and the weak ergodicity breaking phenomenon has been revealed. It is shown that
the general quantum Langevin equation can exhibit some novel details of the experimental
diffusion process.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion plays a very important role for the particle mixing, homogenization, selection and separation [1]; therefore
much interest has been devoted to this topic in past decades not only experimentally but also theoretically. These
investigations can also help to understand the statistical behaviors of many kinds of microscopic particles. For example, a
cold atom in optical lattices [2], globular DNA inmicrostructures [3], enzymatic reaction cycles drivingmolecularmotors [4]
or colloidal granules in optical vortices [5,6]. The colloidal granules diffusion is a simple example of those studies and the
developed methods are powerful enough to investigate the diffusion of particles in different conditions.

It has been shown that there is not only normal diffusion but also anomalous diffusion in nature. Both of them can be
described with the mean squared displacement (MSD) of particles. Concentrating on the one-dimensional cases, the MSD
for regular diffusion is given by Metzler and Klafter [7] ⟨x2(t)⟩ = 2kt , where k is the diffusion coefficient and ⟨· · ·⟩ can
be understood either as an ensemble average over a large ensemble of trajectories or as a temporal moving average. For
anomalous diffusion, the MSD has the form ⟨x2(t)⟩ ∝ kαtα . Systems with 0 < α < 1 display subdiffusion, while values of
1 < α < 2 correspond to superdiffusion. These kinds of forms of diffusion have been observed inmany experiments through
tracking particles [8,9] with optical tweezers and video microscopy. It is interested that by using some complementary
analysis tools to deal with the detected data, many groups found some novel features of the particle diffusion [10–13].
For example, the MSD displays some oscillation in a certain time range. Especially, it has been found that the MSD of lipid
granules in S. pombe displays normal diffusion in short time and then a turnover to subdiffusion [14]. It in fact proves that
the granule motion exhibits weak ergodicity breaking, which is interesting in understanding the mechanism of the granule
motion.

Theoretically, some works have been done for explaining the novel phenomena with continuous time random walk
(CTRW) and fractional Brownian motion (FBM) with overdamped approximation. The CTRW subdiffusion has not been
identified until now as the stochastic mechanism; the FBM was proposed as the stochastic mechanism in some of those
systems [15–17]. But the usage of the overdamped approximation is unsafe because it results in significant difference from
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the exact solution in the study of the autocorrelation function [18]. Thus, it will be interesting to investigate the problems
by using other methods.

In this paper, we use the general quantum Langevin equation (GQLE) to investigate the motion of particles driven
by a constant external force over a landscape consisting of a periodic potential corrugated by a small amount of spatial
disorder. We shall simulate MSD by using the GQLE, and the oscillation of the MSD will be naturally shown in our data. The
anomalous diffusive behavior arising fromweak spatial disorder will be obtained with amore corrugated random potential.
Furthermore, the ergodicity breaking will be shown in our plots. And it will also be shown that the time averaged MSD
(TAMSD) strongly differs from one trajectory to another, while ensemble averaged MSD (EAMSD) obtains a convergent
result in a long time.

The remaining part of this paper is organized as follows. In Section 2, we shall briefly summarize the elements of the
GQLE methods and set up the technology need for the rest of the paper. In Section 3 we shall illustrate the GQLE diffusive
behavior, which is somewhat different from the overdamped cases. Conclusions and further applications of diffusion law
are then discussed in Section 4.

2. Dynamics of the diffusion system

Throughout this paper, we use the general quantum Langevin equation to investigate Brownian motion, which has the
form [19]

mẍ(t) + m
 t

0
dt ′γ (t − t ′)ẋ(t ′) + U ′(x) = F(t). (1)

Here, m is the mass and x is the coordinate operator of the system, and U ′(x) = dU(x)/dx where U(x) is the potential
function. The noise force operator F(t) and memory kernel γ (t − t ′) are given by

F(t) =


j

[{qj(0) − x(0)}κj cosωjt + pj(0)κ
1
2
j sinωjt], (2)

and

γ (t − t ′) =
1
m


j

κj cosωj(t − t ′). (3)

Here, qj(0) and pj(0) denote the initial coordinate and corresponding momentum of the j-th bath oscillator and κj = ω2
j is

the coefficient of the j-th bath oscillator coupled to the system. Eq. (1) is the well known exact quantized operator Langevin
equation for which the noise properties of F(t) can be derived by using a suitable initial canonical distribution of the bath
coordinate and momentum operators as

⟨F(t)⟩QS = 0, (4)

1
2
{⟨F(t)F(t ′)⟩QS + ⟨F(t ′)F(t)⟩QS} =

1
2


j

κjh̄ωj coth


h̄ωj

2kBT


cosωj(t − t ′), (5)

where ⟨· · ·⟩QS refers to quantum statistical average [20] on the degrees of freedom and is defined as

⟨O⟩QS =
TrO exp(−Hbath/kBT )

Tr exp(−Hbath/kBT )
(6)

for any operatorO({qj−x}, {pj}), whereHbath =


j{(p
2
j /2)+1/2κj(qj−x)2}. To construct the c-number Langevin equation,

we firstly carry out the average to Eq. (1) as

m⟨ẍ(t)⟩ + m
 t

0
dt ′γ (t − t ′)⟨ẋ(t ′)⟩ + ⟨U ′(x)⟩ = ⟨F(t)⟩, (7)

where ⟨· · ·⟩ denotes the quantum-mechanical average [19]. Let f (t) = ⟨F(t)⟩. We then have

f (t) =


j

[{⟨qj(0)⟩ − ⟨x(0)⟩}κj cos(ωjt) + ⟨pj(0)⟩κ
1
2
j sin(ωjt)]. (8)

Thus, we can obtain the c-number equation as

m⟨ẍ(t)⟩ + m
 t

0
dt ′γ (t − t ′)⟨ẋ(t ′)⟩ + ⟨U ′(x)⟩ = f (t), (9)
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