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HIGHLIGHTS

Stable process is described to accommodate the observations of heavy-tailed returns.
Non-stationarity is formulated into the return process through stochastic volatility models.
Random-walk models for the return sequence are derived from the return process.

The incompatibility between the random-walk model and scaling laws is pointed out.

An aggregation theorem is proposed to offer a resolution of the mismatch problem.

ARTICLE INFO ABSTRACT

Article history: Widely cited evidence for scaling (self-similarity) of the returns of stocks and other se-
Received 23 January 2013 curities is inconsistent with virtually all currently-used models for price movements. In
Received in revised form 1 May 2013 particular, state-of-the-art models provide for ubiquitous, irregular, and oftentimes high-
Available online 2 July 2013 frequency fluctuations in volatility (“stochastic volatility”), both intraday and across the
days, weeks, and years over which data is aggregated in demonstrations of self-similarity of
returns. Stochastic volatility renders these models, which are based on variants and gener-
Self-similarity ali_zations of random Yvalks, incompatible with self-sir_nilarity. We show here that gmpiri;al
Stochastic volatility evidence for self-similarity does not actually contradict the analytic lack of self-similarity
Market time in these models. The resolution of the mismatch between models and data can be traced
to a statistical consequence of aggregating large amounts of non-stationary data.
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1. Background

The 1900 dissertation of Louis Bachelier, on The Theory of Speculation [1], proposed a random-walk model for security
prices. The basic model, elaborated to accommodate heavy-tailed distributions and stochastic volatilities, still provides a
compelling and nearly universally accepted foundation for a theory of price movements. At the same time, a salient and
much-discussed feature of the data is the remarkably precise self-similarity of the returns, relative to the return interval, of
many of these securities. This was first observed by Mandelbrot [2] and has since been found in multiple data sets involving
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Fig. 1. Scaling of GARCH-simulated returns. One-minute returns on IBM for all of 2005 were used to fit a GARCH model, with autoregressive and moving
average terms each of order 10 (p = q = 10). The model was used to generate o (t), for ten years of one-minute volatilities (t = 1, 2, ..., 932, 400).
Left-hand panel shows a typical window with 101 consecutive values of o. Volatilities were used to generate ten years of simulated one-minute returns,

using (1.2) and a standard Brownian motion for w. These were summed over disjoint intervals to produce the corresponding (simulated) returns R,(f'),

k=1,2,...,N® h =2ifori =0,1,...,10. For each of the 11 return intervals, the ensemble of returns was used to estimate f (0), the magnitude
of the mass function at zero. Following the approach of Ref. [4], if R® ~ h'/*R® then f® (r) = h=/¢f® (th=1/*), and hence f™ (0) = h~"/*f(0) and
logf®™(0) = —é logh 4 logf("(0). The fit is excellent, as seen in the right-hand panel where the least-squares regression line is superimposed on the

pairs (log h, logf(h) (0)),f(“’ denoting a nonparametric, kernel, estimator of f ™. (We used the Matlab library function ksdensity.) The slope of the regression
is about —0.52, which together with the good fit could be mistaken as evidence for R ~ h'/*R(M with @ = 2. We did not include the superposition of
the eleven histograms of scaled returns, h’l/“R,(!”, k=1,2,...,N® whereh =2,i=0,1,..., 10, since they are indistinguishable.

arange of securities and time periods (cf. Refs. [3-16], to name a few). With a straightforward calculation we will conclude
that state-of-the-art models of price movements do not generate self-similar processes (see Section 2), and are therefore at
odds with the empirical scaling of returns. We will then show (Section 3) that scaling of empirical distributions is likely to
be a statistical consequence of the aggregation of large amounts of non-stationary data.

Bachelier’s remarkable thesis included a first construction of Brownian motion, and proposed a suitably scaled version
as a model for the price dynamics of securities: S(t) = S(0) + ocw(t), in which w is a “standard” Brownian motion and o
is the standard deviation of the change in price after one unit of time. The model has evolved, incrementally, to better ac-
commodate theoretical and empirical constraints. For example, the realization that the scale of an ensuing price increment
is typically and logically proportional to the current price, rather than independent of it, leads to the geometric (instead of
linear) Brownian motion:

R(t) = InS(t) — InS(0) = s w(t) (1.1)

after correcting for a possible drift associated with risk-free investment.

Additionally, the common observation that returns are too peaked and heavy-tailed to be consistent with the normal
distribution led [2] to seek a replacement for the Brownian motion, while preserving the compelling argument that
increments of prices arise from large numbers of small influences. As stable processes are the only possible limits of rescaled
sums of independent random variables (the “generalized central limit theorem” [17]), and as the resulting theoretical return
distributions are a better, and often excellent, fit to empirical returns, Mandelbrot proposed models of the same form as (1.1)
but with w(t) interpreted more generally as an «-stable Lévy process, a € (0, 2]. The special case « = 2 recovers ordinary
Brownian motion.

Further refinements are dictated by the fact that volatilities, modeled by the scaling factor o (which is a standard devi-
ation only in the case o = 2), are almost never constant (o = o (t), “stochastic volatility” cf. Refs. [18,19]). And in fact the
evidence is for very rapid fluctuations in o (t) (e.g. the left-hand panel in Fig. 1 is typical). A parsimonious extension of (1.1),
whether or not ¢ = 2, is through the stochastic integral

R(t) = InS(t) — InS(0) = / o (s)dw(s) (1.2)
0

which falls out of the same thought experiment that took us from discrete and small price movements to the stable process
w(t), except that a step at time t has scale proportional to o (t) rather than o.

Many lines of thought lead to more-or-less the same thing. For example, the function o (t) can be thought of as itself
a stochastic process, dependent or independent of w, or as a given deterministic (perhaps historical) volatility trajectory.
Many authors prefer to think of o (t) as a proxy for, or measure of, market activity or “market time”, and in fact under very
general conditions the result of a random time change can also be expressed by (1.2), cf. Refs. [20-22]. We will assume that
either o (t) is deterministic or, if stochastic, it is independent of w, in which case we will condition on a sample path of
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