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h i g h l i g h t s

• We propose an extended ‘‘rock–paper–scissors’’ game model named the ‘‘fingers’’ game.
• We investigate the ‘‘fingers’’ game using both direct simulations and nonlinear partial differential equations.
• Increasing the number of species can jeopardize biodiversity.
• Reproduction rate and mobility also affect species’ biodiversity in our game.

a r t i c l e i n f o

Article history:
Received 10 November 2012
Received in revised form 13 May 2013
Available online 25 May 2013

Keywords:
‘‘Rock–paper–scissors’’ game
Biodiversity
‘‘Fingers’’ game
PDEs

a b s t r a c t

Cyclic competition game models, particularly the ‘‘rock–paper–scissors’’ model, play im-
portant roles in exploring the problem of multi-species coexistence in spatially ecological
systems.Wepropose an extended ‘‘rock–paper–scissors’’ game tomodel cyclic interactions
among five species, and find that two of the five can coexistent when biodiversity disap-
pears, which is different from the ‘‘rock–paper–scissors’’ game. As the number of fingers
is five, we named the new model the ‘‘fingers’’ game, where the thumb, forefinger, mid-
dle finger, ring finger, and little finger cyclically dominate their subsequent species and are
dominated by their former species. We investigate the ‘‘fingers’’ model in two ways: di-
rect simulations and nonlinear partial differential equations. An important finding is that
the number of species in a cyclic competition game has an influence on the emergence
of biodiversity. To be specific, the ‘‘rock–paper–scissors’’ model is in favor of maintaining
biodiversity in comparison with the ‘‘fingers’’ model when the variables (population size,
reproduction rate, selection rate, andmigration rate) are the same. It is also shown that the
mobility and reproduction rate can promote or jeopardize biodiversity.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Biodiversity and self-organized patterns are two fundamental phenomena of ecological systems. Over the last few years,
there has been an increasing interest in understanding the dynamicalmechanism of creating biodiversity and self-organized
patterns in ecological systems. Generally, cyclic competition game models, particularly the ‘‘rock–paper–scissors’’ game
model, are proposed to characterize the essence of multi-species ecological systems [1–5]. In fact, there are series of natural
cyclic interactions in ecological systemswhich can be appropriatelymodeled as cyclic competition games, such as the three-
morph mating system in the side-blotched lizard [6] and Escherichia coli [7].

Studies of cyclic competition games can greatly benefit our understanding of multi-species ecological systems. On the
one hand, such a study can be used to explore how biodiversity is maintained or jeopardized [8–11,7,12–19]. For ex-
ample, Kerr et al. [7] used a real-life ‘‘rock–paper–scissors’’ game to study the effect of local dispersal on biodiversity.
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Indeed, many insights have been gained about the creation of biodiversity through this approach. It was found that mobility
could remarkably promote and jeopardize biodiversity [12–15]. In detail, when the mobility exceeded a threshold, biodi-
versity was destroyed; in contrast, when the mobility was below a certain threshold, three species could coexist. Moreover,
it was found that competition and intraspecies infection could strongly promote coexistence and maintain ecological bio-
diversity, while interspecies spreading could not [16,17]. Jiang et al. [19] observed that increasing the selection rate could
promote biodiversity.

On the other hand, studies of cyclic competition games can also be used to investigate the formation of self-organized
patterns [20–26]. For example, Wang et al. [24] incorporated both intra- and inter-patch migrations in cyclic competition
games, and found the occurrence of remarkable target-wave patterns in the absence of any external control. Jiang et al. [25]
incorporated a periodic current of three species in a small central area to investigate the emergence of target waves. They
also reproduced multi-armed spirals and multi-pair antispirals by using a set of seed species distributions.

Though much work has been done, most of them focus on the dynamics of cyclic competition games with three species,
i.e., the ‘‘rock–paper–scissors’’ game. Indeed, until now, the dynamical behavior of cyclic competition games with more
species was still not clear. In the ‘‘predator–prey’’ model, an extended version with four species has been investigated, in
which each species dominated its subsequent species andwas dominated by its former species cyclically [27–31]. It is shown
that simply adding to the number of species can producemuchmore complex scenarios. Naturally,wewonderwhat happens
to the dynamics behaviors of the ‘‘rock–paper–scissors’’ game after adding to the number of species. Following this line, we
establish an extended ‘‘rock–paper–scissors’’ model with five species, where each species dominates its subsequent species
and is dominated by its former species cyclically, and explore its dynamical behaviors in this paper.

The main contributions of this paper are two-fold. First, we show that two species may coexist in a cyclic competition
game with five species, if neither of those two species could dominate or be dominated by the other. As a comparison, note
that in the ‘‘rock–paper–scissors’’ model, any two species could not coexistwithout the presence of the third species. Second,
we show the effects ofmobilityM , reproduction rate, and the number of species on biodiversity in a cyclic competition game
with five species. In detail, we find that there is a critical thresholdMc formobility. ForM > Mc , at least three species become
extinct. For M < Mc , five species could coexist. Intriguingly, we observe that the critical threshold for mobility is smaller
in the cyclic competition game with five species than in the ‘‘rock–paper–scissors’’ game. This indicates that the number of
species in cyclic competition may have an influence on the emergence of biodiversity.

This paper is organized as follows. Section 2 introduces the evolutionary model of the cyclic competition game with five
species. Section 3 presents themain results: the effects ofmobility, reproduction rate, and number of species on biodiversity
are explored in this section. In Section 4, we explain the main results analytically. Some concluding remarks are given in
Section 5.

2. The model

In this section, we propose an extended ‘‘rock–paper–scissors’’ game to model the cyclic interactions among five mobile
species. For simplicity, we name this extended ‘‘rock–paper–scissors’’ game the ‘‘fingers’’ game, where the thumb (A), fore-
finger (B), middle finger (C), ring finger (D), and little finger (E) refer to each species, respectively. In this ‘‘fingers’’ game,
the five species form a cycle such that each species dominates its subsequent species and is dominated by its former species.
Obviously, there exist certain pairs of species where one cannot dominate or be dominated by the other. We call such pairs
of species irrelevant species.

Now consider a square lattice of sizeN = L2 with periodic boundary conditions. The population is arranged on this square
lattice. In detail, each site in the square lattice is either occupied by one individual or empty. Interactions occur among two
nearest neighboring individuals, as illustrated in the following rules:

AB
σ
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σ
→ B∅, CD

σ
→ C∅, DE

σ
→D∅, EA

σ
→ E∅ (1)

A∅
µ
→ AA, B∅

µ
→ BB, C∅

µ
→ CC, D∅

µ
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µ
→ EE (2)

A�
ε
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ε
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ε
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ε

→ �D, E�
ε

→ �E. (3)

Here, A, B, C,D, and E denote individuals from the five species, respectively, ∅ denotes empty sites, and � represents a
general site which may be occupied with an arbitrary species or an empty site. Relation (1) describes the interactions of
cyclic selection. Each species dominates a less-predominant species cyclically and leaves the neighboring site empty with
rate σ . Relations (2) and (3) characterize reproduction and migration that occur at rate µ and ε, respectively.

The evolutionary dynamics of the population is illustrated as follows. At each step, we randomly choose one individual
and one of its neighbors. For each selected pair of nodes, selection, reproduction, and migration occur with probabilities

σ
σ+µ+ε

, µ

σ+µ+ε
, and ε

σ+µ+ε
, respectively. However, whether the updating can successfully occur is determined by the state

of both sites. In simulations, an actual time step is defined as the steps duringwhich each individual experience one updating
on average. In other words, in one actual step, N pairwise interactions occur. Moreover, the number of time steps involved
in the simulation is called the waiting time T . Following previous works [12–14], here, the waiting time is set as T = O(N).
Individual mobility M is defined as M = ε/2N , which is proportional to the average area explored by a mobile individual
per unit time according to the theory of random walks [32].
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