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h i g h l i g h t s

• We introduced a coarse-grained approach via theory of generalized functions.
• We determined the coarse-grained coefficients for volume conserving surface (VCS) models.
• The employed method makes use of small changes in a test space.
• We applied the approach to symmetric and asymmetric VCS models.
• The approach connects the coefficients to the SPDF for each model.
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a b s t r a c t

Volume conserving surface (VCS) models without deposition and evaporation, as well
as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of
conserved dynamics. In this work we study two similar VCS models with conserved noise,
which differ from each other by the axial symmetry of their dynamic hopping rules. We
use a coarse-grained approach to analyze the models and show how to determine the
coefficients of their corresponding continuous stochastic differential equation (SDE)within
the same universality class. The employed method makes use of small translations in
a test space which contains the stationary probability density function (SPDF). In case
of the symmetric model we calculate all the coarse-grained coefficients of the related
conserved Kardar–Parisi–Zhang (KPZ) equation. With respect to the symmetric model, the
asymmetric model adds new terms which have to be analyzed, first of all the diffusion
term, whose coarse-grained coefficient can be determined by the samemethod. In contrast
to other methods, the used formalism allows to calculate all coefficients of the SDE
theoretically and within limits numerically. Above all, the used approach connects the
coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The roughening properties of nonequilibrium surface systems with well-defined power-law behavior can be classified
into universality classes by a unique set of exponents, which determine their dynamical scaling [1]. Discrete models and
continuous equationswithin the sameuniversality class share the same scaling exponents,which canbe shownbynumerical
and analytical methods. In order to determine these exponents, many discretemodels and continuous stochastic differential
equations (SDE) have been studied using simulations, symmetry analyses, dynamical renormalization group theory, or
numerical integration [2].
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Discrete models and continuous SDE within the same universality class share not only the same scaling exponents, but
also the same linearities and (or) nonlinearities [3]. In this context, models belonging the Kardar–Parisi–Zhang (KPZ) [4]
or to the conserved KPZ universality class are of special importance, since for these models it is possible to determine
the nonlinearities via Monte Carlo simulations using the interface tilting method [5,6]. Another method, which is not
limited to the calculation of the KPZ-nonlinearities, was introduced by Vvedensky et al. [7]. They start this calculation
from a discrete SDE (or discrete Langevin equation) and determine the continuous counterpart of the discrete SDE using
an analytical approach. The approach is based on the regularization of the Heaviside Θ-function and on the coarse grain
approximation using a lattice constant which tends to zero [8–11]. The standard procedure to regularize a function is to
replace each Heaviside Θ-function by a smooth function θε , which is continuously differentiable to any order and depends
on a regularization parameter ε which has to be chosen in a way that θϵ → Θ when ε → 0. For details, see Appendix A. The
regularization function θε has to be analytic throughout its domain, but especially at zero, in order to enable a Taylor series
expansion. The Taylor coefficients depend on both, the regularization prescription (i.e. the regularization function chosen)
and the regularization parameter ε. As pointed out by Katzav and Schwartz [12] this expansion is problematic since in the
limit ε → 0 the Heaviside Θ-function is not analytic around zero. Consequently the ε parameter cannot be removed in
the process of coarse-graining. Another weak point of the method is the difficulty of reaching conclusive results in models
of higher dimensions than one. Finally, although the mathematical derivation is direct, it can generate discrepancies in
interpretation of coarse coefficients of the continuous differential equation.

Recently, we introduced a different coarse-grained approach based on generalized function or distribution theory [13].
We showed, that using our approach, it is possible to calculate not only nonlinear, but also, all coefficients of the stochastic
differential equation for a given discrete model of the KPZ universality class. In this work we use our formalism to show,
how to determine the coarse-grained coefficients of two volume conserving surface models.

There are two well-defined groups of models and equations as distinguished by their noise, which is either non-
conservative or conservative. Growth models and equations which describe deposition or evaporation process are included
in the first group. In contrast, volume conserving surface (VCS) models without deposition or evaporation are included
in second group. The models studied in this work are VCS models and consequently have conservative noise. Volume
conserving processes are defined as physical processes which occur on the surface of a solid and preserve the total volume
enclosed by the surface. These processes describe the movement of a particle from a site of the surface to another, and
exclude particle deposition or evaporation. The conserved noise is assumed to be Gaussian distributed and uncorrelated. It
has an expectation value of zero and the correlation is

⟨η(x⃗, t) η(x⃗′, t ′)⟩ = −2Q ∇
2δ(x⃗ − x⃗′) δ(t − t ′), (1)

with x⃗ ∈ Rd and where the conserved noise intensity Q is proportional to the temperature of the system.
The conserved KPZ (cKPZ) equation (h = h(x⃗, t), ν < 0, and λ < 0)
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+ η(x⃗, t), (2)

proposed by Sun et al. [14] describes the first continuous VCS process with conserved noise. The expression in the brackets
of Eq. (2) we call KPZ kernel of the equation. In the first molecular-beam epitaxy (MBE) models, Eq. (2) reappears with an
additive constant F that takes the deposition flux into account. This extended equation is called Villain–Lai–Das Sarma (VLD)
equation, named by the authors of the article it was first time mentioned [15,3]. In contrast to the noise term of the cKPZ
equation, the noise term of the VLD equation describes non-conservative noise. It has an expectation value of zero and the
correlation ⟨η(x⃗, t) η(x⃗′, t ′)⟩ = −2D δ(x⃗− x⃗′) δ(t−t ′), where the noise intensityD is proportional to the flux F . Although the
cKPZ and VLD equations have the same KPZ kernel, the equations show distinct macroscopic properties, which have been
identified and studied in various scientific works [16]. Since both equations have the same kernel, these distinct properties
can be attributed the different nature of their noise.

A VCS model can be described by the continuity differential equation or conservation law

∂h
∂t

+ ∇ · j = η, (3)

where j = j(x⃗, t) is the surface diffusion current and η = η(x⃗, t) is the conserved noise. The form of the current j
is determined by the symmetries of the system. The current cannot depend explicitly on h, since this would break the
invariance under constant height translations. It is expected that under nonequilibrium conditions the total current j has
two terms, i.e. j = −∇µne + jne. Here µne is the nonequilibrium chemical potential and jne is the nonequilibrium current.
From symmetry consideration it is expected that µne is a function of ∇2h and ∇h.

The first model studied in this work has both of these terms. Its dynamic rules are axial symmetric, which means, that a
randomly chosen particle hops independently from the actual surface configuration with the same probability to left as it
hops to the right. Its KPZ kernel (see the Eq. (2)) is proportional to µne. Furthermore it is expected that jne is an odd function
of ∇h.

The second model studied in this work has both types of current contribution, ∇µne and jne. Its dynamic rules are not
axial symmetric, which means, that it depends on the surface configuration whether a randomly chosen particle hops to
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