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h i g h l i g h t s

• We show the q-exponential appears as an appropriate function for fitting the degree distribution of the earthquake networks.
• We show that the q-exponent as a function of resolution has a peak.
• This peak represents a threshold for our previous assertion on dependence of the network’s characteristics on the resolution.
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a b s t r a c t

Studying earthquakes and the associated geodynamic processes based on the complex
network theory enables us to learn about the universal features of the earthquake phe-
nomenon. In addition, we can determine new indices for identification of regions geophysi-
cally. It was found that earthquake networks are scale free and its degree distribution obeys
the power law. Here we claim that the q-exponential function is better than power law
model for fitting the degree distribution.We also study the behavior of qparameter (nonex-
tensivity measure) with respect to resolution. It was previously asserted in Eur. Phys. J. B
(2012) 85: 23; that the topological characteristics of earthquake networks are dependent
on each other for large values of the resolution. A peak in the plot of q against resolution
determines the beginning of the assertion range.

© 2013 Published by Elsevier B.V.

1. Introduction 1

Nowadays complexnetwork theory iswidely used to study complexphenomena inmanydisciplines. Earthquakes display 2

a complex spatio-temporal behavior of the earth’s crust. We can quantify the complexity of the earthquake phenomena by 3

computing its associated network characteristics. In the first stepwe should describe how to construct earthquake networks. 4

Baiesi and Paczuski introduced a metric which takes into account the time interval, special distance between two earth- 5

quakes and almost the magnitude of the first event for quantifying the correlation between two seismic events. In this 6

definition, linked nodes are strongly correlated pairs, and an earthquake network is the set of all linked nodes [1]. They 7

found that such a network is scale free with exponent γ ≈ 2. 8

Telesca and Lovallo investigated properties of a network of Italian earthquakes by means of the visibility graph 9

method [2]. They found that the degree distribution of the magnitude point process is power law. It is also discovered that 10

with the increase of the magnitude threshold, degree distribution does not change significantly. 11

Abe and Suzuki used an alternative way for constructing earthquake networks, by dividing the specific geographical 12

region into small cubic or square cells. If an earthquake with any values of magnitude occurs in a cell, they identify it as a 13

vertex of a network. Two successive events in vertices are connected to each other by an edge. Then, different properties 14

of such networks in California and Japan have been studied [3–8]. Furthermore, it has been shown that it is of the small- 15

world [9] and scale free type [10]. One of the astonishing results is concerned with the clustering coefficient that remains 16
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stationary before main shocks. At the main shocks, it has a sudden jump, and then it decays slowly to become stationary1

again [7,8]. The clustering structure of an earthquake network has been studied recently [11]. Further, the dependence of2

this value on the size of real seismic data has been examined. It has been discovered that there exists a scaling law for3

the clustering coefficient in terms of cell-size which was needed for constructing a network. It has been found that scaling4

function associated with the clustering coefficient approaches to an invariant value when the cell-size becomes larger than5

a certain value. Dependence of the scale free exponent, γ ; to the cell-size was almost discovered [12]. It has been reported6

that the γ approaches a fixed value and the cell-size dependence disappearswhen the cell-size becomes larger than a certain7

value. In addition, the dependence of the clustering coefficient to the cell-size has been considered too. Again, it also takes8

the universal invariant value ≈ 0.85 as the cell-size becomes larger than a certain value.9

In our recent work [13], we have studied the role of the resolution; a parameter that is related to the inverse of the cell10

size, on the features of earthquake networks in Iran and California. For large values of the resolution, we showed that all11

network characteristics behave as a power law function of resolution and by the reason are dependent on each other. Thus12

one of the topological characteristics is adequate for describing the earthquake network.13

In this work we show the q-exponential appears as an appropriate function for fitting the degree distribution of14

earthquake networks. We also show that the q-exponent as a function of resolution has a peak. This peak represents a15

threshold for validity of our previous assertion.16

This paper is organized as follows, Section 2 is devoted to describe the nonextensive statistical mechanics in brief, in17

Section 3 we review the method of constructing earthquake networks and the results are presented in Section 4.Q218

2. Nonextensive mechanics19

Tsallis in 1988 generalized the traditional definition of the Boltzmann–Gibbs for the entropy [14],20

Sq =


1 −

Ω
i=1

pqi


q − 1

. (1)21

in which pi represents the probability for occurrence of the i-th micro-state of the system and Ω shows the total accessible22

number ofmicro-states. q is a parameter that exhibits the internal properties of system. Subsequently it was discovered that23

the Tsallis entropy can describe a wide range of the complex phenomena [15].24

An earthquake is a complex and nonlinear phenomenon in the earth’s crust. The nonlinearity may result in partitioning25

the phase space so that the state of the system is restricted to be in particular region of the phase space at least for a finite26

period of time. In such a case we cannot extract complete information about systems micro-states by considering the time27

average of the event sequence. It is believed the nonextensive statistical mechanics is a good candidate for dealing with28

systems that exhibit incompleteness. The Tsallis entropy puts this incompleteness in the parameter q. In the context of29

nonextensive statistical mechanics, the probability of micro-states is related to time averaging analysis by defining the30

escort probability [16].31

Two factors are the reasons for incompleteness in seismic time series, the problem with monitoring small earthquakes32

and also the finite length of data. Therefore, it is rational to use Tsallis entropy for studying earthquake networks. In this33

case, pi = p(ki) is the probability that a node has a ki link. pi is not an observable because some events may possibly remain34

obscured. We can define the actual probability, πi, associated to any probability pi which is called the escort probability.35

πi =
pqi

Ω
i=1

pqi

. (2)36

The escort probability is measured from empirical data and obeys the normalization condition.37

Ω
i=1

πi = 1. (3)38

The nonextensive statistical mechanics is constructed by maximization of the Tsallis entropy accompanied by the39

normalization condition and other constraints in the system, as,40

Ω
i=1

kiπi = K . (4)41

K is a constant. The result is probability density,42

pi ∼ (1 − (1 − q)βki)
q

(1−q) , (5)43

β is the reduced Lagrange multiplier. For practical purpose, it is better to work with cumulative probability,44

Pi =

Ω
j=i

πj. (6)45
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