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the epidemic threshold, therefore promoting the outbreak of epidemics. On the other
; . hand, if we consider nonuniform transmission among individuals, the epidemic threshold
Disease spreading . . . .
Complex networks increases, thus inhibiting the spreading process. When both mechanisms are at work, the
SIS model latter might prevail, hence resulting in an increase of the epidemic threshold with respect
Heterogeneous mean-field approach to the standard case, in which both ingredients are absent. Our findings are of interest for a
better understanding of how diseases propagate on structured populations and to a further
design of efficient immunization strategies.

Keywords:

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Infectious diseases have been a great threat to human beings for a long time [1]. Especially in recent years, some
emerging infectious diseases, such as severe acute respiratory syndrome(SARS) [2], avian influenza [3,4], and swine influenza
[5], have resulted in huge life and economical losses. Thus, analyzing and understanding the propagation of infectious
diseases is of great significance to efficiently control potentially devastating epidemic outbreaks as well as to deploy tailored
immunization strategies. Traditionally, there are two typical epidemic models: the Susceptible-Infected-Susceptible (SIS)
and the Susceptible-Infected-Removed (SIR) models. Both kinds of models have been intensively studied during the last
few years, adding to the traditional well-mixed hypotheses usually invoked by the models [6] an ever increasing dose of
realism.

As a matter of fact, real systems are neither regular (and/or well-mixed) nor random, but their topology is usually
different to these limits [7,8]. Actually, the more abundant are those called scale-free (SF) networks, in which the probability
P(k) that an individual has k neighbors is a power-law distribution [8,9]. Today, the modeling of infectious diseases
and their prevention and control has become an interdisciplinary issue which has attracted the attention of scientists
from epidemiology, biology, mathematics, physics and computational sciences [10-13]. In particular, Pastor-Satorras and
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Fig. 1. The figure shows the cycle of infection of a susceptible individual. We assume that after the initial infection, the newly infected node will remain
infectious during a time window of T + 1 time steps, after which the node recovers and gets back to the susceptible state.

Vespignani [ 14,15] showed that the epidemic threshold A in an SIS model is absent for SF networks in the thermodynamic
limit, that is, the threshold ). approaches zero and even a vanishingly small infection rate can produce an outbreak. Similar
conclusions were also found for the SIR model on SF networks by Moreno et al. [16]. These alarming results have inspired
a great number of related works, and most results point out that the topology of interactions dominates the spreading
dynamics in complex networks [17-29].

Other works have also explored the effects of different infection mechanisms. For instance, in Ref. [30], the authors
proposed a kind of connectivity-dependent infection scheme, which can yield threshold effects even in scale-free networks
where they would otherwise be unexpected. Additional ingredients include saturation effects [31], constant infectivity
[32], nonuniform transmission [33], finite populations [34], traffic-driven mechanisms [35], and piece-wise infection
probability [36], which have been integrated into the SIS or SIR models.

On the other hand, there are other realistic elements that have been partially addressed in recent studies. For instance, the
issue of delayed recovery can be thought of as the time elapsed since an individual becomes infected and the moment he/she
starts the treatment that could lead to recovery [37,38]. This is especially relevant when studying spreading dynamics of
diseases for which spontaneous recovery not due to medical treatment is unlikely. In what follows, we study the effects
of such delayed recovery on the epidemic thresholds of an SIS dynamics that takes place on top of homogeneous and
heterogeneous networks. Moreover, we also consider the case of nonuniform transmission (i.e., the fact that the spreading
capabilities of an individual depend on his/her number of contacts) and the situation in which both mechanisms are
concurrently active. To this end, we make use of the heterogeneous mean-field theory and perform large-scale numerical
simulations, which we show are in agreement with the analytical predictions.

The rest of this paper is organized as follows. Section 2 describes in detail our model. In Section 3, the mean-field theory is
used to derive the epidemic thresholds for homogeneous and heterogeneous networks. Large-scale numerical Monte Carlo
simulations are also carried out to validate the mean-field approximation in Section 3. Finally, in Section 4, we round off the
paper by presenting our concluding remarks.

2. The model

In the standard SIS model, individuals are divided into two categories: Susceptible (S) and Infected (I). Susceptible
individuals are healthy ones which can be infected with the probability 8 through contacts with infectious subjects. Infective
individuals in their turn are recovered with the probability y, which we henceforth set to 1. Hence, individuals go through
the cycle S —> I — S, their dynamics being described by,

ds(t)
= —yp(0) + Bs(Dp(0)

dp(t) _ ()

TR yp(t) — Bst)p(t)

where s(t) and p(t) stand for the fraction of susceptible and infective individuals. Generally, we neglect the details of
disease infection and fix the size of the total population, and thus s(t) and o(t) need to satisfy the normalization condition:
s(t) +p(t) = 1.

In our modified SIS model with nonuniform spreading (transmission) probabilities and delayed recovery, we still assume
that individuals can be susceptible or infectious. However, we introduce two new ingredients:

e If an individual is infected by his/her infected neighbors at any time step t, it will be infectious during a time window
T + 1. Once this time has elapsed, the infective agent goes back to the susceptible state, S, with probability y = 1, which
can be assumed without loss of generality.

e At each time step t, infected individuals spread the disease to susceptible nodes with a probability that depends on the
number of connections it has. Therefore, we assume that the effective spreading rate A = f/y is a degree-dependent

Agk*

function A (k) = =4~ (i.e., so-called nonuniform transmission).

The flow diagram of the disease spreading process for our modified model can be seen in Fig. 1, in which Iy, I, ..., It
denote the infective individuals at different stages and S represents the susceptible agents.

3. Epidemic thresholds

In this section, we investigate the critical thresholds of the model in both homogeneous and heterogeneous networks.
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