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a b s t r a c t

By studying a simple but realistic biophysical model of tumor growth in the presence
of a constant continuous chemotherapy, we show that if an extended Norton–Simon
hypothesis holds, the system may have multiple equilibria. Thus, the stochastic
bounded fluctuations that affect both the tumor carrying capacity and/or the drug
pharmacodynamics (and/or the drug pharmacokinetics) may cause the transition from a
small equilibrium to a far larger one, not compatible with the life of the host. In particular,
we mainly investigated the effects of fluctuations that involve parameters nonlinearly
affecting the deterministic model. We propose to frame the above phenomena as a new
and non-genetic kind of resistance to chemotherapy.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The large rate of relapses during the chemotherapeutic treatment of solid and non-solid tumors was up to the recent
past, and to some extent also currently, mainly explained by the paradigm of Clonal Resistance (CR) [1], i.e. the ‘‘Darwinian’’
emergence, through fast randommutations, of drug-insensitive cells in a tumor under chemotherapy. Biophysics has given
an important contribute to the understanding of those phenomena [2,3], andmore in general of tumor growth (see Ref. [4–6],
and references therein).

However, in the last decade, a number of investigations [7] revealed that a significant fraction of cases of resistance to
therapy are not ‘‘clonal’’, i.e. not of genetic nature. In other words, in those cases the resistance is not due to the onset of
mutations that are advantageous to the tumor cells. Instead it is actually linked to phenomena that may, broadly speaking,
be defined as physical resistance (PR) to the drug. Perhaps the most important among these phenomena are the limited
ability of the drug to penetrate into the tumor tissue because of poor or nonlinear diffusivity [8], and anomalous binding
of drug molecules to the surface of tumor cells or to the extracellular matrix [9]. This means that resistance cannot only
be imputed to a sort of Darwinian evolution of the cancerous population through the birth of new clones, but also to the
impaired transport of the drug molecules in the tumor.

Virtually all bioprocesses are subject to fluctuations in their rates of changes, either random or periodic [10,11]. Such
fluctuations may interact nontrivially with the intrinsic nonlinear dynamics of the perturbed phenomena [12]. In Ref. [13],
we stressed that, for solid vascularized tumors, there is a possible differentway for the onset of resistance due to the interplay
between a nonlinear population dynamics and noise. This pathway of resistance is induced by the unavoidable stochastic
fluctuations in drug pharmacokinetics.
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Here we set the study in a more general framework, including nonsolid tumors, and we show that multistability of
tumor size under chemotherapy with cytotoxic agents arises as a natural consequence of the well known Norton–Simon
hypothesis [14] if its formulation is suitably extended. Given the multistability of such a system, the addition of stochastic
perturbations to the pharmacokinetics of the administered drug leads to the onset of noise-induced transitions. Although
we shall consider this phenomenon, this is not the main focus of the present work. Indeed, here we shall be mainly involved
in analyzing the consequences of the presence of bounded stochastic fluctuations in the nonlinear interplay between
the neoplasm and its microenvironment, which is summarized in an important parameter: the tumor carrying capacity.
Moreover, we shall also investigate the possibility of fluctuations in the drug pharmacodynamics, which is also nonlinear.
Concerning the representation of noise, we shall only move within the theory of bounded stochastic processes [15], since
we shall consider the perturbations of parameters that must remain strictly positive and that nonlinearly affect the growth
of the tumor.

2. A Norton–Simon-like model of chemotherapy

Let us consider a tumor – solid or nonsolid – whose size (biomass, number of viable cells, etc.) at time t is denoted as X ,
and which is growing according to a saturable growth law [3].

X ′
= f


X
K


X,

where K > 0, and f (u) is a decreasing function of u such that f (1) = 0. The constant K is usually called carrying capacity,
and it depends on the available nutrients and/or space for which the tumor cells compete. Another important parameter is
the value α = f (0), which we shall call the ‘‘baseline growth rate’’ (BGR). α can be read as a measure of the intrinsic growth
rate of the tumor, in the absence of any competition. Of course, since f (u) is decreasing, the BGR is also the maximal growth
rate. Although very simple, the above class of models is very effective in capturing the main qualitative [3,4,6] and quantita-
tive [3,5] aspects of tumor growth. Two well known growth laws are the Gompertz law, where f (X/K) = β log(K/X), and
the generalized logistic f (X/K) = α(1 − (X/K)a) with a > 0. Note, however, that in the Gompertz case the BGR is infinite,
which is not realistic, as pointed out in Refs. [3,6] (and references therein).

Let the tumor be under the delivering of a cytotoxic therapy with a drug whose blood concentration, denoted by c(t),
may be periodic or constant. Which is the effect of c(t) on the tumor growth? The log-kill hypothesis [16] prescribes that
the rate of tumor cells killing is proportional to the product c(t)X(t):

X ′
= f


X
K


X − γ c(t)X(t). (1)

In the case of a bounded intrinsic growth rate, i.e. f (0) < ∞, the condition ⟨c(t)⟩ > f (0)/γ implies that X(t) → 0,
independently of X(0) > 0.

However, since the seventies Norton and Simon [14] stressed as a potential pitfall of the log-kill hypothesis the fact that
the relative killing rate is simply taken proportional to c(t). According to the log-kill hypothesis, the samedrug concentration
is indeed able to kill the same relative number of cells per unit time independently of the tumor burden. Moreover, the
absolute velocity of regression caused by c(t)would be greater in the larger tumors. This is often unrealistic. On the contrary,
in clinics it is often observed that the effort to make a large tumor regress is considerably greater, whereas histologically
similar tumors of small volumes are curable using the same delivered quantity of the chemotherapeutic agent. A possible
cause of this fact is the development of clones of cells that are resistant to the delivered agent. However, since the reduced
drug effectiveness may also be present in the very first phases of a therapy, Norton and Simon [14] summarized these
observations, by assuming that the parameter γ is not constant but a decreasing function of X, γ (X). In particular, Norton
and Simon proposed that γ (X) were proportional to f (X/K) [14]. We shall not assume this strict hypothesis, we shall
consider here a generic γ positive and decreasing in X , depending also on some internal parameters p, which leads to the
following non-logkill model:

X ′
= f


X
K


X − γ (X; p)c(t)X, X(0) = X0. (2)

It is trivial to verify that if ⟨c(t)⟩ > α/γ (0; p) then the tumor free equilibrium Xe = 0 is locally stable, whereas in case of
constant continuous infusion, c(t) = C , if γ (X; p)C > f (X/K) then the tumor free equilibrium Xe = 0 is globally stable.
In the general case, since γ (K ; p) > f (1) = 0, if α > γ (0; p)C there will be an odd number N ≥ 1 of positive equilibria:
X1(C, K , p), . . . , XN(C, K , p), with Xi < Xj if i < j, and XN < K . It is easy matter to verify that the odd-numbered equilibria
are locally stable, whereas the even-numbered points are unstable. By varying C or K or p onemay get one ormore hysteresis
bifurcations.

3. Including stochastic fluctuations

Let us suppose, for the sake of simplicity, that γ (X; p)C be such that three equilibria are present. Then X1(C, K , p)
and X3(C, K , p) will be locally stable and X2(C, K , p) will be unstable, and it follows that X(t) → X1(C, K , p) for all
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