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a  b  s  t  r  a  c  t

Recently  it  has  become  clear  that many  technologies  follow  a generalized  version  of  Moore’s  law,  i.e. costs
tend to  drop  exponentially,  at different  rates  that depend  on the  technology.  Here  we  formulate  Moore’s
law  as a correlated  geometric  random  walk with drift,  and apply  it to historical  data  on  53  technologies.
We  derive  a closed  form  expression  approximating  the  distribution  of forecast  errors  as  a  function  of
time.  Based  on  hind-casting  experiments  we  show  that this  works  well,  making  it possible  to  collapse
the  forecast  errors  for  many  different  technologies  at different  time  horizons  onto  the  same  universal
distribution.  This  is valuable  because  it allows  us to make  forecasts  for  any  given technology  with  a
clear  understanding  of  the  quality  of  the forecasts.  As a practical  demonstration  we make  distributional
forecasts  at  different  time  horizons  for solar  photovoltaic  modules,  and  show  how  our  method  can  be
used  to estimate  the  probability  that a  given  technology  will  outperform  another  technology  at  a given
point  in  the future.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Technological progress is widely acknowledged as the main
driver of economic growth, and thus any method for improved
technological forecasting is potentially very useful. Given that
technological progress depends on innovation, which is gener-
ally thought of as something new and unanticipated, forecasting
it might seem to be an oxymoron. In fact there are several pos-
tulated laws for technological improvement, such as Moore’s law
and Wright’s law, that have been used to make predictions about
technology cost and performance. But how well do these methods
work?

Predictions are useful because they allow us to plan, but to form
good plans it is necessary to know probabilities of possible out-
comes. Point forecasts are of limited value unless they are very
accurate, and when uncertainties are large they can even be dan-
gerous if they are taken too seriously. At the very least one needs
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error bars, or better yet, a distributional forecast, estimating the
likelihood of different future outcomes. Although there are now
a few papers testing technological forecasts1 there is as yet no
method that gives distributional forecasts based on an empirically
validated stochastic process. In this paper we remedy this situa-
tion by deriving the distributional errors for a simple forecasting
method and testing our predictions on empirical data on tech-
nology costs. To motivate the problem that we address, consider
three technologies related to electricity generation: coal mining,
nuclear power and photovoltaic modules. Fig. 1 compares their
long-term historical prices. Over the last 150 years the inflation-
adjusted price of coal has fluctuated by a factor of three or so,
but shows no long term trend, and indeed from the historical time
series one cannot reject the null hypothesis of a random walk with

1 See e.g. Alchian (1963), Alberth (2008). Nagy et al. (2013) test the relative accu-
racy of different methods of forecasting statistically but do not produce and test a
distributional estimate of forecast reliability for any particular method. McCrory,
cited in Jantsch (1967), assumes a Gaussian distribution and uses this to calculate
the probability that a targeted level of progress be met  at a given horizon. Here we
assume and test a Gaussian distribution for the natural log.
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Fig. 1. A comparison of long-term price trends for coal, nuclear power and solar
photovoltaic modules. Prices for coal and nuclear power are costs in the US in dollars
per  kilowatt hour (scale on the left) whereas solar modules are in dollars per watt-
peak, i.e. the cost for the capacity to generate a watt of electricity in full sunlight
(scale on the right). For coal we use units of the cost of the coal that would need to
be  burned in a modern US plant if it were necessary to buy the coal at its inflation-
adjusted price at different points in the past. Nuclear prices are Busbar costs for US
nuclear plants in the year in which they became operational (from Cooper (2009)).
The  alignment of the left and right vertical axes is purely suggestive; based on recent
estimates of levelized costs, we took $0.177/kW h = $0.82/Wp in 2013 (2013$). The
number $0.177/kW h is a global value produced as a projection for 2013 by the
International Energy Agency (Table 4 in International Energy Agency (2014)). We
note  that it is compatible with estimated values (Table 1 in Baker et al. (2013),
Fig. 4 in International Energy Agency (2014)). The red cross is the agreed price for
the planned UK Nuclear power plant at Hinkley Point which is scheduled to come
online in 2023 (£ 0.0925 ≈ $0.14). The dashed line corresponds to an earlier target
of  $0.05/kW h set by the U.S. Department of Energy.

no drift2 (McNerney et al., 2011). Nuclear power and solar pho-
tovoltaic electricity, in contrast, are both new technologies that
emerged at roughly the same time. The first commercial nuclear
power plant opened in 1956 and the first practical use of solar pho-
tovoltaics was as a power supply for the Vanguard I satellite in 1958.
The cost of electricity generated by nuclear power is highly variable,
but has generally increased by a factor of two or three during the
period shown here. In contrast, a watt of solar photovoltaic capac-
ity cost $256 in 1956 (Perlin, 1999) (about $1910 in 2013 dollars)
vs. $0.82 in 2013, dropping in price by a factor of about 2330. Since
1980 photovoltaic modules have decreased in cost at an average
rate of about 10% per year.

In giving this example we are not trying to make a head-to-
head comparison of the full system costs for generating electricity.
Instead we are comparing three different technologies, coal mining,
nuclear power and photovoltaic manufacture. Generating electric-
ity with coal requires plant construction (whose historical cost
has dropped considerably since the first plants came online at the
beginning of the 20th century). Generating electricity via solar pho-
tovoltaics has balance of system costs that have not dropped as fast
as that of modules in recent years. Our point here is that different
technologies can decrease in cost at very different rates.

Predicting the rate of technological improvement is obviously
very useful for planning and investment. But how consistent are

2 To drive home the point that fossil fuels show no long term trend of dropping
in  cost, after adjusting for inflation coal now costs about what it did in 1890, and a
similar statement applies to oil and gas.

such trends? In response to a forecast that the trends above will
continue, a skeptic would rightfully respond, “How do we know
that the historical trend will continue? Isn’t it possible that things
will reverse, and over the next 20 years coal will drop in price
dramatically and solar will go back up?”.

Our paper provides a quantitative answer to this question. We
put ourselves in the past, pretend we don’t know the future, and
use a simple method to forecast the costs of 53 different technolo-
gies. Actually going through the exercise of making out-of-sample
forecasts rather than simply doing in-sample regressions has the
essential advantage that it fully mimics the process of making fore-
casts and allows us to say precisely how well forecasts would have
performed. Out-of-sample testing such as we do here is particularly
important when models are mis-specified, which one expects for a
complicated phenomenon such as technological improvement.

We show how one can combine the experience from forecast-
ing many technologies to make reliable distributional forecasts for
a given technology. For solar PV modules, for example, we can say,
“Based on experience with many other technologies, the probabil-
ity is roughly 5% that in 2030 the price of solar PV modules will be
greater than or equal to their current (2013) price”. We  can assign a
probability to different price levels at different points in the future,
as is done later in Fig. 10 (where we  show that very likely the price
will drop significantly). We  can also compare different technolo-
gies to assess the likelihood of different future scenarios for their
relative prices, as is done in Fig. 11.

Technological costs occasionally experience structural breaks
where trends change. Indeed there are several clear examples in our
historical data, and although we  have not explicitly modeled this,
their effect on forecast errors is included in the empirical analysis
we have done here. The point is that, while such structural breaks
happen, they are not so large and so common as to over-ride our
ability to forecast. Every technology has its own story, its own spe-
cific set of causes and effects, that explain why  costs went up or
down in any given year. Nonetheless, as we demonstrate here, the
long term trends tend to be consistent, and can be captured via his-
torical time series methods with no direct information about the
underlying technology-specific stories.

In this paper we use a very simple approach to forecasting
that was originally motivated by Moore’s Law. As everyone knows,
Intel’s ex-CEO, Gordon Moore, famously predicted that the number
of transistors on integrated circuits would double every two  years,
i.e. at an annual rate of about 40%. Making transistors smaller also
brings along a variety of other benefits, such as increased speed,
decreased power consumption, and less expensive manufacture
costs per unit of computation. As a result it quickly became clear
that Moore’s law applies more broadly, for example, implying a
doubling of computational speed every 18 months.

Moore’s law stimulated others to look at related data more
carefully, and they discovered that exponential improvement is a
reasonable approximation for other types of computer hardware
as well, such as hard drives. Since the performance of hard drives
depends on physical factors that are unrelated to transistor density
this is an independent fact, though of course the fact that mass stor-
age is essential for computation causes a tight coupling between the
two technologies. Lienhard, Koh and Magee, and others3 examined
data for other products, including many that have nothing to do

3 Examples include Lienhard (2006), Koh and Magee (2006, 2008), Bailey et al.
(2012), Benson and Magee (2014a,b), Nagy et al. (2013). Studies of improvement
in  computers over long spans of time indicate super-exponential improvement
(Nordhaus, 2007; Nagy et al., 2011), suggesting that Moore’s law may only be an
approximation reasonably valid over spans of time of 50 years or less. See also e.g.
Funk (2013) for an explanation of Moore’s law based on geometric scaling, and Funk
and  Magee (2014) for empirical evidence regarding fast improvement prior to large
production increase.
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