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This paper analyzes traffic bottleneck congestion when drivers randomly cause incidents that temporarily block
the bottleneck. Drivers have general scheduling preferences for time spent at home and at work. They indepen-
dently choose morning departure times from home to maximize expected utility without knowing whether an
incident has occurred. The resulting departure timepatternmay be compressed or dispersed according towheth-
er or not the bottleneck is fully utilized throughout the departure period on days without incidents. For both the
user equilibrium (UE) and the social optimum (SO) the departure pattern changes from compressed to dispersed
when the probability of an incident becomes sufficiently high. The SO can be decentralized with a time-varying
toll, but drivers are likely to be strictly worse off than in the UE unless they benefit from the toll revenues in some
way. A numerical example is presented for illustration. Finally, the model is extended to encompass minor
incidents in which the bottleneck retains some capacity during an incident.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Traffic congestion imposes a heavy burden in urban areas. The Texas
Transportation Institute conducts an annual survey of traffic congestion
in the US. According to its 2012 report, in 2011 congestion caused an es-
timated 5.5 billion hours of travel delay and 2.9 billion gallons of extra
fuel consumption with a total cost of $121 billion (Schrank et al., 2012).
The average cost per automobile commuter in the urban areas studied
was $818. Nonrecurring traffic congestion due to accidents, bad weather,
special events, and other shocks accounts for a large fraction of the total
delays. According to Schrank et al. (2011, Appendix B, p. B-27) incident-
related delays alone contribute 52–58% of total delay in US urban areas.1

Unanticipated travel delays upset peoples' travel plans, and may
cause them to arrive late with serious consequences for commuting,
business, and other types of trips. Travelers can sometimes adjust to
the threat of delays by changing their transport mode or destination,
or even canceling trips, but a more common response is to adjust
departure times. Researchers have long been interested in studying
the adjustment process, and they have adopted various modeling
approaches. In an early and insightful study, Gaver (1968) derived the
optimal departure time for a driver faced with stochastic travel time
who incurs costs from both travel time and schedule delay. The optimal
policy, which Gaver called a headstart strategy, entails a probabilistic
trade-off between arriving early and arriving late. Gaver assumed
that travel time has a constant and exogenous variance, and he did
not attempt to derive an endogenous travel time distribution as a
dynamic equilibrium. His approach was adopted and extended by
Knight (1974), Hall (1983), Noland and Small (1995), and Noland
(1997).

All these studies usemodelswith flow congestion. An alternative ap-
proach is to use the Vickrey (1969) bottleneck model in which conges-
tion delay takes the form of queuing. A series of studies by Arnott et al.
(1991, 1999) and Lindsey (1994, 1999) introduced stochasticity into the
bottleneck model by assuming that capacity and/or demand fluctuate
randomly from day to day, but are constant during the period of use
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on a given day. For want of a better term, we will call this the “daily-
shocks” model.2

Our paper differs from these earlier bottleneck-model studies in
three ways. First, they adopted the traditional specification of trip-
timing preferences used by Vickrey (1969) in which individuals have
a preferred time to arrive at their destination and incur a schedule
delay cost proportional to the amount of time they arrive earlier or
later. Following Börjesson et al. (2012) we will call this the “step”
model. Here we adopt a more general scheduling utility function
approach that incorporates preferences for time spent at different activ-
ities. We apply the model to commuting trips by specifying preferences
for time spent at home and at work.3

Second, and more fundamentally, we assume that capacity can
fluctuate while trips are being made rather than being determined be-
fore travel begins. Third, we assume that capacity reductions are due
to incidents caused by drivers during their trip. The timing of shocks is
therefore endogenous to the model rather than exogenous as in earlier
studies. Since drivers are responsible for most incidents, this within-
day, endogenous specification of capacity fluctuations accounts for a
significant portion of nonrecurring congestion that occurs. It also pro-
vides the basis for assessing tolling and other policies to reduce the
costs of congestion by altering peoples' travel decisions. For most of
the paper we assume that capacity is reduced to zero by an incident al-
though in a final section we examine a variant of the model in which
loss of capacity is partial.

Two unpublished studies cover part of the same ground as we do.
Schrage (2006) derives the unregulated and socially optimal departure
rates for a single road link when the accident rate is a function of the
inflow rate and therefore endogenous. Her model differs from ours in
three main respects. First, she uses the Henderson (1974) flow conges-
tion model in which a driver's travel time is determined by the aggre-
gate departure rate when he starts his trip. This model has no state
variable analogous to queue length in the bottleneck model. Second,
capacity is reduced only partially in an incident and it subsequently
recovers slowly, and deterministically, rather than all at once. Third,
drivers are assumed to know whether and when an accident has oc-
curred before they depart. Schrage derives the optimal time-varying
and state-dependent toll that decentralizes the social optimum, but
she does not solve for the timing of departures in either the unregulated
user equilibrium or the social optimum. In independentwork, Peer et al.
(2010) use the bottleneck model to analyze incidents in which, like
Schrage (2006), capacity loss is partial. They treat incident timing as
exogenous and assume that an incident persists until all drivers have
completed their trips. They also adopt the “step” model of trip-timing
preferences. Finally, they limit attention to the unregulated user equilib-
rium and do not examine the social optimum or tolling.

In our paper we undertake a systematic analysis of both user
(i.e., Nash) equilibrium and socially optimal trip-timing decisions
when drivers do not know whether an incident has occurred before
they decide when to depart. We solve for the optimal time-varying
(but state-independent) toll that decentralizes the social optimum.
One of the questions we address is whether the bottleneck operates at
capacity throughout the travel period on days when no incident occurs,

or whether some capacity goes “unused”. We show that for both the
user equilibrium and social optimum, spare capacity does exist for
part, or all, of the travel period if incidents are sufficiently probable.4

In contrast to the daily-shocks model, departures can be more spread
out in the user equilibrium than in the social optimum. Another differ-
ence is that the socially-optimal departure rate can decrease, rather
than increase, over time.

The paper is organized as follows. Section 2 describes the model.
Section 3 summarizes the main features of user equilibrium and social
optimum for the deterministic variant of the model with no incidents.
Section 4 derives properties of the user equilibrium with incidents.
Section 5 conducts a parallel analysis of the social optimum. Section 6
presents a numerical example calibrated for morning commutes, and
then considers a variant for evening commutes. Section 7 undertakes a
partial analysis of an extension of the model in which the bottleneck
retains some capacity during an incident. Finally, Section 8 concludes
with a summary and ideas for extension.

2. The model

A continuum of N identical individuals drive alone from a common
origin through a bottleneck to a common destination.5 To be concrete,
in most of the paper the trip is assumed to be a morning commute
from home (H) to work (W). (However, an evening commute is also
examined in the example section.) Departure time from home is denot-
ed by t. Drivers6 depart at a rate ρ (t) during a set of times T; cumulative
departures are thus R(t) = ∫ {v ∈ T|v ≤ t}ρ(v)dv.7 Free-flow travel time
before and after reaching the bottleneck is normalized to zero. A driver
departing at t encounters a queuing delay of q (t) at the bottleneck and
reaches work at time a = t + q (t). Drivers have scheduling prefer-
ences8 described by the utility function

u t; að Þ ¼
Z t

tH

β vð Þdvþ
Z tW

a
γ vð Þdv: ð1Þ

The limits of integration, tH and tW, are chosen such that all travel takes
place within the interval [tH, tW]. Function β(∙) N 0 denotes the flow of
utility from being at home, and function γ(∙) N 0 denotes utility from
being at work. Functions β(∙) and γ(∙) are assumed to be continuously
differentiable with derivatives β′ b 0 and γ′ N 0 and to intersect at
time t⁎.9 Utility from time spent driving is normalized to zero. These
assumptions ensure that, for any fixed trip duration, there is a unique
departure time t, t b t⁎, that maximizes scheduling utility. They also as-
sure that u (t, a) is strictly increasing in t, strictly decreasing in a, and
globally strictly concave. Two final assumptions, Lim

v→tH
β vð Þ ¼ ∞ and Lim

v→tW

γ vð Þ ¼ ∞ , will ensure existence of a Nash equilibrium in departure
times.10

2 Arnott et al. (1991, 1999) and Li et al. (2008) analyze user equilibrium in the daily-
shocks model, whereas Lindsey (1994, 1999) focuses on the social optimum. Other recent
papers have also studied random travel times using the bottleneck model. Xin and
Levinson (2007) assume that travel times are exogenous and independently distributed
over time, and their model does not feature incidents per se. Fosgerau (2010) shows
how the dynamics of random congestion induce characteristic loops in the relationship
between the mean and the variance of travel time over different times of day. de Palma
and Fosgerau (2011) analyze random queue sorting whereby travel time is random from
the perspective of individual travelers, but capacity and demand are fixed.

3 Jenelius et al. (2011) use a similar scheduling utility function approach to study the ef-
fects of unpredictable travel time shocks on trip-timing decisions. They apply themodel to
a full day of activity includingmorning and evening commutes. Their model differs in fea-
turing shocks that are exogenous and independent of time of day. There is also no traffic
congestion in their model.

4 Holding spare capacity is broadly consistent with policies of reserving shoulder lanes
for use during accidents and other disruptions.

5 A notational glossary is provided at the end of the paper.
6 Throughout the paperwewill refer to “drivers” even though individuals are treated as

a continuum in the model so that there are no discrete or atomic agents. Reference to
“drivers”, “users”, “commuters” and so on is common in the bottleneck model literature,
and it facilitates exposition.

7 All statements about ρ in the paper will be “almost surely”, since ρ can take arbitrary
values on sets of Lebesgue measure zero without affecting aggregate behavior or welfare.
To ease exposition this detail will be ignored.

8 This formulation of scheduling preferences originates from Vickrey (1969, 1973) and
has been used by Tseng and Verhoef (2008), Fosgerau and Engelson (2011), Fosgerau and
de Palma (2012), Jenelius et al. (2011), and Börjesson et al. (2012).

9 The notation differs from that in the stepmodel where β denotes the cost per minute
of arriving before t⁎, and γ denotes the cost per minute of arriving after t⁎. The assump-
tions β′ b 0 and γ′ N 0 rule out the step model because the (implicit) β(∙) and γ(∙) func-
tions in that model are constants except at t⁎ where γ(∙) steps up. This is not
particularly restrictive since the step-model preferences can be approximated arbitrarily
closely by differentiable functions. Nevertheless, the assumptions could be generalized
as in Fosgerau and Engelson (2011).
10 These assumptions are relaxed in the example of Section 6where β(∙) and γ(∙) are lin-
ear functions.
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