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a b s t r a c t

Some potentially dangerous diseases are completely asymptomatic. Their diagnosis as incidental findings
of ever-more-sensitive medical imaging can leave patients and physicians in something of a quandary.
The patient feels well, and potential interventions to stave off long-term deterioration or death bring
with them immediate risks. We discuss the use of a Markov Decision Process (MDP) model (rather than
Monte Carlo simulation of a Markov Model) to create a tool for analyzing individual treatment decisions
for asymptomatic chronic diseases where a patient’s condition cannot improve. We formulate a finite-
horizon MDP model to determine optimal treatment plans and discuss three distinct optimality
criteria: (a) maximizing expected quality-adjusted-life years with and without discounting, (b) maxi-
mizing the expected number of life years in good health, and (c) maximizing the expected utility for
number of years in good health. In (c) we assume exponential utility and consider different risk aversion
factors reported in the medical literature. We illustrate the model’s use by considering asymptomatic
intracranial aneurysm. Our model builds on a simulation model [19] created to examine treatment
recommendations based on cost-effectiveness. We demonstrate that incorporating risk aversion leads to
“no treatment” recommendations for some types of aneurysm. Furthermore, the use of alternate patient-
selected criteria leads to recommendations that vary from [19] in several scenarios. We also discuss the
use of the software as a decision support tool to help make individualized treatment recommendations
and demonstrate that the computational performance of the algorithm makes its use feasible during
a short office visit.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The American Recovery and Reinvestment Act of 2009 autho-
rized $1.1 billion in support of comparative effectiveness research
in medicine. According to the U.S. Department of Health and
Human Services website, “comparative effectiveness research
provides information on the relative strengths and weakness of
various medical interventions. Such research will give clinicians
and patients valid information to make decisions that will improve
the performance of the U.S. health care system.”

Even though comparative effectiveness is not tantamount to
cost-effectiveness, in many societal contexts treatment options are
compared on the basis of expected cost per quality-adjusted life year
(QALY). A common methodology for such comparisons combines
Monte Carlo simulation with a Markov model of the disease. A

search of PubMed database for articles with terms “Markov” and
“cost-effectiveness” in the title or abstract returns close to 1600
papers added to the database since 1986. Markov model definition
includes the specification of patient health states, themodel cyclee
time between state transitions e and the time horizon. Transition
probabilities between various states due to treatments or disease
progression are obtained frommedical literature, as are health state
utilities, and the costs associated with the disease or its treatment.
After specifying the model, analysts use Monte Carlo simulation to
obtain the expected discounted number of quality-adjusted life
years as well as expected discounted costs for a simulated cohort of
patients. Treatments are compared based on the ratio of these ex-
pected discounted costs and QALYs.

Treatment recommendations based on cost-effectiveness may
not be valid across geographies since the magnitude of the
financial costs, and the entities bearing them, vary so widely. Even
comparing treatments based on QALY alone, without regard to
costs, is problematic, since there is neither agreement on what
populations should be surveyed to obtain the quality-of-life utili-
ties nor on the methods and survey instruments that should be
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used [8,15]. Similarly, the selection of discount factors used to
model preferences in health over time is also debated [18]. Finally,
even if the recommendations were based on expected QALYs
arising from individual quality-of-life weights and the disease
probabilities for individual patients, they would still fail to take
patients’ risk attitudes into consideration. As noted by Asch and
Hershey [4], taking a patient’s risk attitude into consideration is
important because no single patient will have the opportunity to
try different treatments multiple times, so it is unreasonable
to conjecture that individual preferences would be based on
expected outcomes.

Patients can differ in their manifestation of a disease, and the
most effective treatment differs both by the particular manifesta-
tion and an individual patient’s attitudes to various dimensions of
treatment outcomes as well as risk preferences. Online decision
support tools (e.g., http://www.lifemath.net/cancer/) help patients
analyze probabilistic benefits of different therapies. In this paper,
we discuss the use of a Markov Decision Process (MDP) model (in
contrast to Monte Carlo simulation of a Markov Model) to create
a tool for analyzing individual treatment decisions with consider-
ation of a patient’s risk attitude. To date, MDP analysis has seen
little use in medical decision making [2], possibly because the
analysis requires the development of custom software, while off-
the-shelf software packages are available to perform Monte Carlo
simulation with Markov Models in medical settings (e.g., TreeAge).
Many treatment decisions are sequential decision problems, and
MDPmodels are powerful tools for analyzing such problems. Unlike
simulation models, MDPs are efficient at identifying optimal treat-
ment policies under a variety of reasonable objectives, such as, (i)
maximizing expected QALYs with quality-of-life scores obtained
from the individual patient, (ii) maximizing the expected number
of years in good health, (iii) maximizing the expected utility of the
number of years in good health, and (iv) maximizing probability of
being well at a particular time in the future, etc. The two latter
criteria encompass risk sensitivity, acknowledged as an important
consideration in medical decisions with complex tradeoffs (e.g.
[4,5]). Evenwhen a treatment decision problem is relatively simple
and consists only of identifying the optimal treatment time and
type, algorithms for solving MDPs are computationally efficient
relative to simulation models and therefore more suitable for
utilization in decision aids that can be used during a patient’s visit
with a physician.

We focus our analysis on a particular type of disease: asymp-
tomatic chronic diseases diagnosed as an incidental finding. The
disease may or may not progress, but it can be treated with a risky
intervention prior to any deterioration in the patient’s condition.
Advances in medical imaging and its more frequent use have
resulted in increased asymptomatic incidental findings. One such
condition, asymptomatic intracranial aneurysm, is an abnormal
bulging outward of one of the brain’s arteries. An aneurysm’s
rupture can lead to stroke, brain damage or death. However, an
aneurysm may never rupture, and an asymptomatic aneurysm
creates no physical discomfort for a patient. The dilemma for the
patient is that the available treatments are risky and provide no
immediately apparent benefit, as, at the time of the diagnosis, the
patient is otherwise well1. We specifically discuss incorporating
a patient’s risk attitude into the MDP objective.

Takao and Noji [19] proposed a Markov model of intracranial
aneurysm in their cost-effectiveness study. The model specifies
upwards of twenty probability parameters related to the disease
and its treatment. It is doubtful that any physician or patient can

determine the joint implication of so many parameters without
the benefit of a decision support system. Additionally, Walling
[20] wrote that the optimal management of unruptured intra-
cranial aneurysms is “highly controversial because of uncertainty
about the probability of rupture and the risks of surgical repair.”
Despite the significant uncertainty surrounding the disease and
treatment-related probabilities, physicians make treatment
recommendations based on a variety of criteria and rules of
thumb. Another advantage of MDP analysis is that a suitable
software implementation allows for rapid sensitivity analysis, to
determine whether uncertainty about parameter values would
affect treatment choice.

This paper is organized as follows: In Section 2, we formulate
a generalMDPmodel for a disease and discuss risk-sensitive objective
formulation foranasymptomaticdisease. In the followingsections,we
use the example of intracranial aneurysm to illustrate the approach.
Model specification for asymptomatic intracranial aneurysms and
their treatment is presented in Section 3. Section 3.3 presents sample
results of a quantitative analysis for intracranial aneurysm, showing
how treatment recommendations differ by optimization criteria.
Section 4 concludes with a discussion of the described approach’s
contribution to the medical decision making literature.

2. Model formulation

We define a patient’s state s as a duple: {a,s}. Element a is the
patient’s age, and s˛S, where S is the set of health states. A health
state combines the patient’s physical well being (e.g., well,
disabled) and eligibility for treatment as well as his possible dete-
rioration due to the disease. Let ŝ˛S designate the initial state at
the time of diagnosis, i.e., the statewhere the patient is well and has
not yet received any treatment. Let Y˛S, be the set of all states
where the patient is well, i.e., asymptomatic.

The decision epochs in the finite-horizon model are numbered
with integers0 throughN. At the startof epoch0, thepatient’s current
age is denoted by a0.We assume that fromepoch n to epoch nþ 1 the
patient ages by c, where c is the model’s cycle length. We further
assume that patients do not live past the age ofA. So,N is the smallest
integer larger than or equal to (A� a0)/c, that is N¼ Q(A� a0)/cS.

Patients transition from a state sn¼ {an,sn} in epoch n, to state
snþ1¼ {anþ1, snþ1} in epoch nþ 1. While the transition of the age
element is deterministic:

anþ1 ¼ an þ c; (1)

the transition from sn to snþ1 is probabilistic.
The purpose of any treatment is to prevent an irreversible

deterioration of the patient’s health. The treatment can only be
rendered when the patient is well. Further, we assume that at most
one interventional treatment is possible over a lifetime, so the
patient is deciding between different treatments and the time to
administer them. Thus Ts, the set of feasible treatments depending
on the patient’s state s is defined as

Ts ¼
�fno treatment; intervention1;.; intervention kg if s ¼ ŝ

fno treatmentgotherwise

(2)

A treatment policy t¼ {t0, t1,.,tN�1} prescribes a treatment tn for
a patient of age an in health state s ¼ ŝ.

Let pn
s denote the probability of a patient being in health state s

at age an. The vector pn ¼ fpn
0;p

n
1;.;pn

ŝ g2 is a function of
a selected treatment policy found as

1 Note that we refer to an asymptomatic patient with an intracranial aneurysm as
"well" following the convention we observed in the medical literature. 2 Without loss of generality, we assume that ŝ is the highest numbered state in

P
.
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