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A B S T R A C T

Background: Value-of-information (VOI) analysis provides an analyt-
ical framework to assess whether obtaining additional evidence is
worthwhile to reduce decision uncertainty. The reporting of VOI
measures, particularly the expected value of perfect parameter infor-
mation (EVPPI) and the expected value of sample information (EVSI),
is limited because of the computational burden associated with
typical two-level Monte-Carlo–based solution. Recently, a nonpara-
metric regression approach was proposed that allows the estimation
of multiparameter EVPPI and EVSI directly from a probabilistic
sensitivity analysis sample. Objectives: To demonstrate the value of
the nonparametric regression approach in calculating VOI measures
in real-world cases and to compare its performance with the standard
approach of the Monte-Carlo simulation. Methods: We used the

regression approach to calculate EVPPI and EVSI in two models,
and compared the results with the estimates obtained via the
standard Monte-Carlo simulation. Results: The VOI values from
the two approaches were very close; computation using the
regression method, however, was faster. Conclusion: The non-
parametric regression approach provides an efficient and easy-to-
implement alternative for EVPPI and EVSI calculation in economic
models.
Keywords: Monte-Carlo simulation, nonparametric regression, value of
information.
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Introduction

Decision models are commonly used to evaluate the cost-
effectiveness of health interventions. They are populated with
input parameters estimated from various sources; nevertheless,
the true values of these parameters are not known with certainty,
which may result in suboptimal decisions [1]. The preferred
approach to characterize decision uncertainty is to conduct
probabilistic sensitivity analysis (PSA), whereby uncertainty is
propagated in the model using Monte-Carlo simulation [2].
Decision uncertainty is then presented as the probability that
each intervention has the highest expected net benefit (i.e.,
benefits minus costs). Nevertheless, an important additional step
is to know whether a decision can be made on the basis of
current evidence or whether additional research is required. This
can be informed using value-of-information (VOI) analysis [3].
Measures of VOI include 1) the expected value of perfect infor-
mation (EVPI), which is the maximum value of additional infor-
mation to resolve all uncertainty in the parameters; 2) the
expected value of perfect parameter information (EVPPI), which
is the value of resolving uncertainty in a given parameter or set of
parameters; and 3) the expected value of sample information
(EVSI), which estimates the value of a particular data collection

exercise (e.g., a randomized controlled trial with some chosen
sample size) in reducing decision uncertainty [4].

EVPI calculation is straightforward given the PSA; neverthe-
less, although this measure is necessary, it is not sufficient to
inform decisions because it represents only an upper bound of
the value of additional research to resolve uncertainty [3]. Rather,
it is important to know which parameters are contributing most
to decision uncertainty, such that further research should focus
on these. Here, the EVPPI for a parameter represents the value of
eliminating uncertainty in that parameter, and therefore gives an
upper bound on the value of a study to inform that parameter.
The EVSI meanwhile represents the value of a given study design
in reducing parameter uncertainty [5]. Comparing the EVSI with
the expected cost of a research study establishes a sufficient
condition to inform whether additional research is worthwhile.
Unfortunately, the reporting of EVSI and EVPPI estimates in
economic evaluations remains limited because of the perceived
computational burden associated with these two measures [6–8].

The EVPPI for a single parameter or a group of parameters is
typically calculated using a two-level nested Monte-Carlo simula-
tion approach. This requires sampling values of the parameter(s) of
interest in an outer loop, and then, conditional on each sampled
parameter set, sampling from the joint conditional distribution of
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the remaining parameters in an inner loop. At each inner loop
step the model is evaluated [9,10]. For EVSI calculation, plausible
sets of data from the proposed future study of a given sample size
are simulated in an outer loop, and then, conditional on each
generated data set, the posterior distribution of the parameters is
sampled in an inner loop. Again, the model is evaluated at each
inner loop step [11,12]. The repeated sampling and evaluation of
the model within the inner loop is time-consuming. Calculating
EVSI values for a range of possible sample sizes could take days
or even weeks depending on the complexity of the model [12–14].
Furthermore, it is often difficult to determine the number of
simulations at each level to ensure adequate precision and to
avoid the upward bias that results from the maximization over
sampled quantities that occurs within the outer loop of the
simulation [15]. Finally, the presence of parameter correlation
or nonconjugacy between prior parameter distributions and
proposed data likelihoods makes EVSI calculation even more
difficult [11]. Here, Markov chain Monte-Carlo simulation
(or any similar approach) would be necessary [6,7]. In some
situations, most notably when using multilinear (i.e., sum-
product type) models (e.g., decision tree) in which the net benefit
is a linear function of the cost and effect parameters or in which
the incremental net benefit is approximately normally distrib-
uted, one-level Monte-Carlo simulation or analytical equations
can be used [11,16,17]. There is, however, a wide class of models
for which these constraints do not apply.

Methods for efficient EVPPI calculation of single parameters
have been developed. These show promise, but do not extend to
groups of parameters simultaneously [18,19]. A method based on
the numerical approximation of the posterior expected net
benefit, conditional on sampled data, has been proposed as an
efficient approach for EVSI calculation; it, however, requires
significant skills and effort to write the necessary computer code
[13,20]. Recently, Strong et al. [9,12] have proposed a more
straightforward nonparametric regression approach for calculat-
ing multiparameter EVPPI and EVSI directly from a PSA sample.
The method has the advantage in that the model does not need
to be run as part of the EVPPI or the EVSI algorithm. Nevertheless,
there is a need to demonstrate the value of this method in real-
world cases and to compare its performance with the standard
approach of the Monte-Carlo simulation.

In this study, we applied the nonparametric regression
method to calculate the EVPPI and the EVSI in two decision
models for two health care interventions. In addition, we com-
pared the results and computation time with the estimates
obtained using Monte-Carlo simulation.

Methods

The Two Economic Models

We conducted two cost-effectiveness analyses using two decision
models constructed in TreeAge Pro (TreeAge Software, Inc.,
Version 2014 R1, Williamstown, MA). The full details of the two
models and analyses can be found elsewhere [21,22].

Model 1: Negative pressure wound therapy in patients
undergoing cesarean section
The first model was a decision tree for negative pressure wound
therapy (NPWT) compared with hydrocolloid dressing in prevent-
ing surgical site infections after cesarean sections in high-risk (e.
g., obese) women [22]. The modeled patients may develop
surgical site infections that could be either superficial or deep.
Patients could die or survive depending on the type of the
infection developed (see Appendix 1 in Supplemental Materials

found at http://dx.doi.org/10.1016/j.jval.2016.01.011). To populate
the model, we systematically searched the literature and identi-
fied relevant evidence. Because of the scarcity of information on
the effectiveness of NPWT in this setting, we combined the data
on the relative effectiveness of the device from a pilot study (n ¼
92) on obese women undergoing cesarean sections with the data
from a trial (n ¼ 81) on NPWT in high-risk patients with various
types of surgeries [22].

Model 2: Nutritional support for the prevention of pressure
ulcers in hospitalized patients
The second model was a six-health-state Markov cohort model
for nutritional support compared with standard hospital diet in
preventing pressure ulcers [21]. Model duration was 1 year with a
1-day cycle length. Patients start the model with intact skin
before they move sequentially between different stages of skin
ulceration (i.e., closed wound to open wound). Furthermore,
patients could die of any cause, be discharged, or remain
hospitalized (see Appendix 1 in Supplemental Materials). We
systematically searched and identified relevant evidence. We
performed a meta-analysis of five trials (n ¼ 1381) to estimate
the relative effectiveness of nutritional support in preventing
pressure ulcers compared with hospital diet [21].

The two models were probabilistic. Input parameters were
assigned probability distributions: in general, beta distributions
for probabilities and utilities, gamma distributions for costs and
disutilities, and lognormal distributions for relative risks [21,22].
For the set of unknown input parameters (θ), each model
predicted the net benefit (NB) for each intervention (i); thus, NB
(i, θ) ¼ willingness-to-pay � effect (i, θ) – cost (i, θ). The efficacy
outcome in the two models was quality-adjusted life-years
gained, and we set the willingness-to-pay threshold at $50,000
per quality-adjusted life-year. The preferred intervention would
be the one with the maximum expected net benefit [maxiEθNB
(i, θ)]. In each case, we performed a PSA using the Monte-
Carlo simulation (10,000 iterations) to characterize decision
uncertainty.

VOI Calculation

We calculated VOI measures using the standard Monte-Carlo
simulation and the Strong et al. nonparametric regression
approach for each of the two decision models. We also recorded,
for each decision problem, the computation time for each VOI
approach.

Methods to calculate VOI measures using Monte-Carlo simu-
lations are described in detail elsewhere [11,23,24]. In short, we
started our analysis by calculating the EVPI, which is the differ-
ence between the expected net benefit of a decision with perfect
information and the decision based on current information [3]:

EVPI ¼ Eθ maxiNB ði, θÞ�maxi EθNB ði,θÞ ð1Þ

The EVPPI for the parameter(s) of interest θI is the difference
between the expected net benefit with perfect information on
these parameters, conditional on the complementary set of other
parameters θC, and the expected net benefit with current infor-
mation [5,24]:

EVPPIhI ¼ EyImaxiEðhC jyIÞNBði,yI,yCÞ-maxiEhNBði,yÞ ð2Þ

For the pressure ulcer Markov model, we performed two
nested Monte-Carlo simulation procedures with 1000 simulations
in each loop. We found this number of simulations sufficient for
the estimates to converge [24]. We assumed the NPWT model to
be linear with no correlation between input parameters, and
therefore a one-level simulation scheme was used in which we
sampled from θI, but kept θC fixed at their prior mean [24].
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