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a b s t r a c t

The paper describes a framework for modeling dynamic soil prop-
erties in 3-dimensions and time (3D + T) using soil data collected
with automated sensor networks as a case study. Two approaches
to geostatistical modeling and spatio-temporal predictions are
described: (1) 3D+ T predictivemodeling using random forests al-
gorithms, and (2) 3D+ T krigingmodel after detrending the obser-
vations for depth-dependent seasonal effects. All the analyses used
data from the Cook Agronomy Farm (37 ha), which includes hourly
measurements of soil volumetric water content, temperature, and
bulk electrical conductivity at 42 stations and five depths (0.3, 0.6,
0.9, 1.2, and 1.5 m), collected over five years. This data set also
includes 2- and 3-dimensional, temporal, and spatio-temporal co-
variates covering the same area. The results of (strict) leave-one-
station-out cross-validation indicate that both models accurately
predicted soil temperature, while predictive power was lower for
water content, and lowest for electrical conductivity. The krig-
ing model explained 37%, 96%, and 18% of the variability in wa-
ter content, temperature, and electrical conductivity respectively
versus 34%, 93%, and 5% explained by the random forests model. A
less rigorous simple cross-validation of the random forests model
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indicated improved predictive powerwhen at least somedatawere
available for each station, explaining 86%, 97%, and 88% of the vari-
ability in water content, temperature, and electrical conductivity
respectively. The high difference between the strict and simple
cross-validation indicates high temporal auto-correlation of values
at measurement stations. Temporal model components (i.e. day of
the year and seasonal trends) explained most of the variability in
observations in both models for all three variables. The seamless
predictions of 3D+ T data produced from this analysis can assist in
understanding soil processes and how they change through a sea-
son, under different land management scenarios, and how they re-
late to other environmental processes.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Comprehension of dynamic soil properties at the field scale requires measurements with high
spatial and temporal resolution. Distributed sensor networks provide frequent in situ measurements
of environmental properties at fixed locations, providing data in 2- or 3-dimensions and through time
(Porter et al., 2005; Pierce and Elliott, 2008).While sensor networks produce ample data for observing
dynamic soil properties, data processing for inference and visualization become increasingly difficult
as data dimensionality increases. Ideally, the end product should consist of seamless interpolations
that accurately represent the spatial and temporal variability in the property of interest. These
products can then be used for predictions at unobserved locations, they can be integrated into process
models, and they can simply aid in visualization of soil properties through space and time.

Multiple approaches have been developed for spatial interpolation of soil properties and digital
soil mapping, including:
(1) multiple regression models based on the soil forming factors, terrain attributes, spatial coordi-

nates, or derived principal components (McKenzie and Ryan, 1999);
(2) smoothing (splines) and neighborhood-based functions (Mitas and Mitasova, 1999);
(3) geostatistics, or kriging, and variations thereof (see overviews by McBratney et al. (2003) and

Hengl (2009)).

Of these, regression-kriging (Odeh et al., 1995; Hengl et al., 2007), which combines a multiple
regression model (a trend) with a spatial correlation model (a variogram) for the residuals, produces
unbiased, continuous prediction surfaces. Regression-kriging has been adapted for soil mapping with
great success, in part because of the flexibility in defining the trend model as a linear, non-linear, or
tree-based relationship between the response and predictors. Furthermore, regression-kriging relies
on the incorporation of auxiliary data, providingmechanistic support for the soil property predictions.

The widest application of regression-kriging in soil science has likely been for producing
2-dimensional (2D) maps (Hengl, 2009). However, soil data is often also collected at multiple depths,
and geostatistical interpolation techniques can be expanded to represent soil predictions across both
vertical and horizontal space (Malone et al., 2009; Veronesi et al., 2012). Global predictions ofmultiple
soil properties obtained from 3-dimensional (3D) regression models were recently showcased by
Hengl et al. (2014a). Here, spline functions define the vertical trend (depth) within the regression
model, while horizontal trends are defined by covariate grids. These approaches are sufficient
for understanding static soil properties across 2- and 3D space; however, modeling dynamic soil
properties requires expansion of the geostatistical model to incorporate correlation in data through
time (Heuvelink andWebster, 2001; Kyriakidis and Journel, 1999). Addition of temporal and/or spatio-
temporal predictors can assist in explaining temporal variation in a response variable, but fitting a
variogrammodel in 2D and time (2D+ T) poses additional challenges (summarized by Heuvelink and
Webster, 2001). Specifically, time exists in only one dimension and has a directional component,while
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