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Causal inference algorithms can be useful in life course epidemiology
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Abstract

Objectives: Life course epidemiology attempts to unravel causal relationships between variables observed over time. Causal relation-
ships can be represented as directed acyclic graphs. This article explains the theoretical concepts of the search algorithms used for finding
such representations, discusses various types of such algorithms, and exemplifies their use in the context of obesity and insulin resistance.

Study Design and Setting: We investigated possible causal relations between gender, birth weight, waist circumference, and blood
glucose level of 4,081 adult participants of the Prevention of REnal and Vascular ENd-stage Disease study. The latter two variables were

measured at three time points at intervals of about 3 years.

Results: We present the resulting causal graphs, estimate parameters of the corresponding structural equation models, and discuss use-

fulness and limitations of this methodology.

Conclusion: As an exploratory method, causal graphs and the associated theory can help construct possible causal models underlying
observational data. In this way, the causal search algorithms provide a valuable statistical tool for life course epidemiological re-

search. © 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Chronic multifactorial diseases develop over time,
sometimes over the course of decades. In different individ-
uals, they are influenced by different genes, life events, and
environmental factors at different points during the life
course [1]. The challenge of life course epidemiology lies
in unraveling possible causal roles of different variables
and estimating the magnitude of their effects. In statistics,
causal inference has been a cause for debate for a long time
[2—5]. Although the results of statistical analysis are often
causally interpreted, statistical theory in itself is rarely con-
cerned with causal inference [6].

The use of randomized experiments is the most com-
monly accepted method for inference on causality [7].
However, when studying risk factors for chronic diseases
that change over time, this approach is usually not applica-
ble. In these cases, observational data can be used to infer
on the plausibility and consistency of causal models.

The development of relevant statistical theory has accel-
erated since the late 1980s. Robins [8] developed a formal
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theory of counterfactual causal inference, providing a way
to deal with direct and indirect effects and time-varying
confounders in longitudinal studies. Pearl [4] presented
a general theory of causation, thereby bridging the gap be-
tween causal connections and statistical associations. Now,
testable constraints such as (conditional) independence
constraints could be deduced from hypothetical causal
models [3—6,9]. The characterization of statistical indistin-
guishability of causal models (see Section 4) led to the
development of search algorithms for equivalence classes
of models, among others by Spirtes et al. [6].

In spite of these ongoing developments, only few appli-
cations of this theory found their way to the literature yet.
An application of one particular causal inference search al-
gorithm (the inductive causation algorithm) was recently
used in the context of quantitative genetics [10]. Here, we
apply various search algorithms in a life course epidemio-
logical context.

1.1. An example from the PREVEND study

We use an example from the research field that studies
temporal relationships between certain medical disorders
that increase the risk of developing cardiovascular disease
and diabetes [11]. We tried to unravel the mechanisms un-
derlying the temporal associations between body fat and
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What is new?

This article exemplifies a statistical tool for exploring
causal inference with observational data, which can
be of great importance in the context of looking for
“the mechanism” in life course epidemiology.

Key findings

e Causal inference search algorithms (based on the
use of causal diagrams) appear to be a useful tool
for exploration of underlying causal mechanisms
in life course epidemiology.

What this adds to what was known?

e This article exemplifies a tool for exploration of
causal mechanisms underlying observational data
in life course epidemiological context and shows
its application in the context of obesity and insulin
resistance.

What is the implication and what should change

now?

e As a rule, in searching for causal mechanism un-
derlying observational data, search algorithms
and causal diagrams should be used in addition
to more traditional approaches.

glucose levels [12—14], details of which are not completely
understood yet [15,16]. We used waist circumference as
a marker for visceral adipose tissue and glucose level as
an indicator of development of insulin resistance. The data
come from the Prevention of REnal and Vascular ENd-
stage Disease (PREVEND) study, a prospective, observa-
tional, cohort study, designed to evaluate the predictive
value of albuminuria for renal and cardiovascular outcomes
[17,18]. The participants of the study underwent three
examinations with intervals of approximately 3 years. At
these time points, denoted as i = 1, 2, 3, plasma glucose
levels, gluc_i (in mmol/L; log-transformed because of
skewness), and waist circumferences, waist_i (in centime-
ter), were recorded. We also included birth weight (in kilo-
gram, recorded with 0.5 kg precision) and gender (0 =
male, 1 = female) [19—22]. We used complete data of
4,081 participants in the analyses. The PREVEND study
was approved by the local medical ethics committee and
conducted in accordance with the Helsinki Declaration of
Research Conduct in Humans. All participants gave written
informed consent [22].

1.2. The structure of this article

Terminology and theory of causal graphs is introduced
in Section 2. In Section 3, we describe various search algo-
rithms. In Section 4, we apply such search algorithms to the

introduced example. In Section 5, we discuss the relative
merits of these algorithms. We conclude by explaining
the advantages of applying this type of analysis for explor-
atory research in life course epidemiology.

2. Causal graphs: terminology and theory

Causal models consist of a statistical model and a causal
graph. Causal graphs describe the causal relations between
the variables in the model. Such a graph consists of vertices
denoting variables, connected with edges, which can be ori-
ented by an arrow, denoting a direct causal relationship. A
graph is called a directed acyclic graph (DAG) when all
edges are directed and the graph contains no feedback
loops. The associated terminology and methodology is
based on the work as found in the book by Spirtes et al.
[6] and Pearl [3.4]. More easily accessible are the over-
views on causal inference given by Spirtes [9] and Pearl
elsewhere [5].

Fig. 1A shows an example of a causal graph, depicting
(completely hypothetical) causal relationships among vari-
ables gender, birth weight, and plasma glucose levels
(gluc_1, gluc_2, and gluc_3) and waist circumference
(waist_1, waist_2, and waist_3), both measured at three
time points.

When sampling from a certain population, the vertices in
a DAG G represent a set Vof random variables and thus are
distributed according to some joint probability distribution
P. In order for a graph and its associated probability distri-
bution to be considered causal, some assumptions have to
be obeyed, such as the causal Markov condition and faith-
fulness condition.

The causal Markov condition translates to the fact that
once we know the parents of a variable in a causal model,
knowledge of ancestors does not provide new information.
The faithfulness condition implies that all and only the con-
ditional independence relations that hold in P are entailed
by the Markov condition in G [6]. If the graph—and there-
fore its probability distribution P—obeys the causal Mar-
kov condition, the joint probability distribution can be
decomposed into conditional probabilities involving only
the variables and their causal parents (assuming all in-
volved probabilities are nonzero). For Fig. 1B, this yields
the following factorization of the joint probability distribu-
tion P:

P(gender, birthweight, waist_1, waist_2)
= P(gender)P(birth weight| gender)
x P(waist_1| gender, birth weight)
x P(waist_2| waist_1)

A directed graph dictates conditional independence rela-
tionships in the joint probability distribution of observed
variables under the causal Markov condition. In deriving
these consequences, a property called directed separation
(d-separation) is extremely useful. D-separation provides
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