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Sample size importantly limits the usefulness of instrumental variable
methods, depending on instrument strength and level of confounding
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Abstract

Objectives: Instrumental variable (IV) analysis is promising for estimation of therapeutic effects from observational data as it can
circumvent unmeasured confounding. However, even if IV assumptions hold, IV analyses will not necessarily provide an estimate closer
to the true effect than conventional analyses as this depends on the estimates’ bias and variance. We investigated how estimates from stan-
dard regression (ordinary least squares [OLS]) and IV (two-stage least squares) regression compare on mean squared error (MSE).

Study Design: We derived an equation for approximation of the threshold sample size, above which IV estimates have a smaller MSE
than OLS estimates. Next, we performed simulations, varying sample size, instrument strength, and level of unmeasured confounding. IV

assumptions were fulfilled by design.

Results: Although biased, OLS estimates were closer on average to the true effect than IV estimates at small sample sizes because of
their smaller variance. The threshold sample size above which IV analysis outperforms OLS regression depends on instrument strength and
strength of unmeasured confounding but will usually be large given the typical moderate instrument strength in medical research.

Conclusion: IV methods are of most value in large studies if considerable unmeasured confounding is likely and a strong and plausible

instrument is available. © 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Conventional methods to estimate therapeutic effects from
observational data are often inherently affected by residual
confounding because of unmeasured patient risk factors for
which they cannot adjust. A potentially promising tool for
estimation of therapeutic effects from observational data that
may circumvent this problem is instrumental variable (IV)
analysis. This method requires the identification of a variable
that determines the probability of treatment but is not in other
ways associated with the outcome under study and thereby
mimics randomization. Expressed more formally, an instru-
ment must fulfill three main assumptions: (1) the instrument
is associated with the exposure (treatment), (2) the instrument
does not affect the outcome in any other way other than
through the exposure (exclusion restriction), and (3) the in-
strument and outcome do not share causes (independence
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assumption) [1—4]. The aforementioned assumptions allow
estimation of bounds of the treatment effect [3.5]. One addi-
tional assumption that allows a point estimate to be obtained
is the assumption of no heterogeneity of treatment effects,
in which case, the IV analysis estimates the average treatment
effect in the population [3,5]. Note that in the case of hetero-
geneity, alternative assumptions can be made, but this is
beyond the scope of this article. Examples of instruments used
in studies of therapeutic effects include regional variation in
treatment rates (i.e., probability of treatment depends on area
of residence) [6] and physician prescribing preference [7—9].
In etiologic studies, Mendelian randomization, which uses ge-
netic information as an IV, is increasingly used [10].
Violations of the exclusion restriction and independence
assumption will lead to biased I'V estimates [5,7,11]. If those
assumptions hold, the IV estimator will be asymptotically un-
biased [1,11]. In contrast, the bias of ordinary least squares
(OLS) linear regression depends on the amount of residual
confounding. However, whether IV analysis effect estimates
can be expected to be closer to the true effect than estimates
from conventional analysis depends on not only the bias but
also the variance of the estimates (larger variances leading
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What is new?

e Very large sample sizes are usually required for
instrumental variable (IV) analysis to provide an
estimate closer on average to the true effect than
estimates from standard regression.

e We derived an equation that can approximate the
threshold sample size above which IV estimates
are closer on average to the true effect than stan-
dard regression.

e In deciding between IV analysis and conventional
analyses, researchers should take into account not
only the strength of the instrument and the level
of confounding but also the available or feasible
sample size.

to higher probability of deviating estimates). The variance
of estimates from IV methods like two-stage least squares
(2-SLS) regression is much larger than from linear regres-
sion at a given sample size because IV methods involve
two estimation stages instead of one [12].

IV methods have been applied in large pharmacoepide-
miological databases, typically exceeding 10,000 patients.
However, study populations in clinical research practice
are often much smaller. Although in principle, the large vari-
ance of the IV estimate at smaller sample sizes may not in-
fluence the validity of the IV estimates, it does affect how
informative and useful the IV estimate is. It translates into
a very wide confidence interval (CI), and the mean squared
error (MSE) of the IV estimate may be much larger than that
of the biased conventional estimate [1]. The influence of
sample size on the error of IV estimates has been investi-
gated in conjunction with violations of IV assumptions
[13]. In contrast, we will focus on the ideal scenario in which
the exclusion restriction and independence assumptions hold
to focus on the role of sample size, confounding, and
strength of instrument. Using theoretical derivations and
simulations, we will investigate the influence of sample size
on how OLS linear regression estimates and 2-SLS IV
regression estimates compare in terms of MSE (which incor-
porates both the bias and the variance of the estimates), de-
pending on instrument strength and level of confounding.

2. Two-SLS IV analysis

Two-SLS IV regression involves two linear regression
steps. The first-stage linear regression is used to obtain
predicted probabilities of treatment for each patient, based
on the instrument. Covariates can be included, giving pre-
dicted probabilities of treatment conditional on the instrument
and these observed covariates. The independence assumption
then states that the instrument is not related to patient

prognosis given these covariates [2]. The second stage is a

regression of the outcome on these predicted treatment prob-

abilities (and covariates if included), thereby providing an es-

timate of the effect of the treatment on the outcome [2,7,14].

For continuous outcomes, the obtained effect estimate is a

mean difference and for binary outcomes a risk difference.
The variance of the 2-SLS estimate is
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where py 7 ¢ is the partial correlation between the instru-
ment Z and the exposure X given covariates C, that is, the
strength of the instrument, and Y is the outcome [11,15].
The variance is therefore 1/ p)zf_z'c times larger than the
variance of an OLS linear regression estimate. This implies
that the CI for the 2-SLS estimator is 1/py , ~ times wider
than the CI of the OLS estimator. For example, for a moder-
ately strong instrument with a correlation between instru-
ment and exposure of 0.2, the CI for the 2-SLS estimator
will be fivefold wider than the CI of the OLS estimator.
If IV assumptions hold that the 2-SLS estimates are asymp-
totically unbiased: bias will exist in finite samples and
depends on the sample size and strength of the instrument.
This is known as small sample bias [5,11], finite sample
bias [1], or weak instrument bias [16]. The partial
F-statistic of the first-stage regression provides an
indication of the magnitude of the small sample bias:
generally small sample bias is negligible at an F-statistic
above 10 [11].

2.1. MSE: a summary measure for bias and variance

The MSE measures the squared average deviation of an
estimated effect from the true effect. It is equal to

MSE=E[<E—B)2] (1)

in which E denotes expectation, ﬁ is the estimated treat-
ment effect, and § is the true treatment effect. It can be
shown that the MSE is the sum of the variance and the
squared bias of an estimate. It is a measure of how far on
average the effect estimate is from the true effect. Compar-
ison of the MSEs of the different analysis methods there-
fore indicates which estimate is closest on average to the
true effect.

2.2. Calculation of a sample size at which IV
outperforms OLS on MSE

The trade-off between the larger bias of the OLS esti-
mates and the larger variance of the IV estimates means that
OLS estimates will be closer on average to the true effect at
small sample sizes, but IV estimates will eventually be
closer on average to the true effect as sample size increases.
We derived Equation (2) (the derivation is provided in eAp-
pendix 1 of the Appendix at www.jclinepi.com) to calculate
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