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Abstract

Objectives: To compare the performance of a targeted maximum likelihood estimator (TMLE) and a collaborative TMLE (CTMLE) to
other estimators in a drug safety analysis, including a regression-based estimator, propensity score (PS)ebased estimators, and an alternate
doubly robust (DR) estimator in a real example and simulations.

Study Design and Setting: The real data set is a subset of observational data from Kaiser Permanente Northern California formatted
for use in active drug safety surveillance. Both the real and simulated data sets include potential confounders, a treatment variable indi-
cating use of one of two antidiabetic treatments and an outcome variable indicating occurrence of an acute myocardial infarction (AMI).

Results: In the real data example, there is no difference in AMI rates between treatments. In simulations, the double robustness property
is demonstrated: DR estimators are consistent if either the initial outcome regression or PS estimator is consistent, whereas other estimators
are inconsistent if the initial estimator is not consistent. In simulations with near-positivity violations, CTMLE performs well relative to
other estimators by adaptively estimating the PS.

Conclusion: Each of the DR estimators was consistent, and TMLE and CTMLE had the smallest mean squared error in simula-
tions. � 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Evaluating the effectiveness and safety of health inter-
ventions through observational studies is made more chal-
lenging by issues, such as confounding, missing data, and
complex longitudinal data structures [1e3]. In an ideal
world, an investigator would perform a randomized con-
trolled trial, but this is often impossible or impractical be-
cause of cost or ethical concerns. Additionally, it may be
impossible to avoid missing data even in randomized trials;
for example, a patient may drop out of the study before
some outcome of interest is observed. In lieu of a random-
ized trial, investigators often attempt to answer the same
questions with observational data. In observational studies,
the health intervention a patient receives is generally not as-
signed randomly but is chosen by the patient or physician
based on characteristics of the patient, such as age, sex,
health conditions, or medications the patient is taking.

These issues raise two important questions: When is it
possible to estimate the effect of some health intervention
on a safety or an effectiveness outcome without bias? and
if it is possible, how can we estimate the effect? To address
the first question, we discuss the potential outcomes frame-
work and use it to formally define a target causal parameter
that we wish to estimate and briefly review conditions
under which it is possible to estimate the parameter without
bias in Section 2. To address the second question, in
Section 3, we review common estimation methods includ-
ing a method based on the G-computation formula, inverse
probability of treatment weighting (IPTW), and propensity
score (PS) matching, and compare them to doubly robust
(DR) methods such as augmented IPTW (AIPTW), targeted
maximum likelihood estimation (TMLE) and collaborative
TMLE (CTMLE), an estimator that uses a data-adaptive es-
timate of the PS in collaboration with the outcome regres-
sion. We also discuss methods for estimating the outcome
regression and PS, including the data-adaptive super learner
algorithm. In Section 4, we compare methods in a real data
example, a simplified version of a drug safety surveillance
study to motivate our question of interest and demonstrate
the estimation methods. The data set is a subset of data
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What is new?

� Performance of outcome regression based, PS
based, and doubly robust estimators are compared
in realistic simulated situations.

� Advantages of doubly robust estimators are dem-
onstrated when at least one of PS or outcome re-
gressions are consistent.

� Advantages of plug-in estimators and, in particular,
CTMLE are demonstrated in near-positivity viola-
tion situations.

� Advantages of data adaptive techniques such as the
super learner algorithm are demonstrated when
parametric models are not sufficient.

from Kaiser Permanente Northern California formatted
according to the specification of Food and Drug Adminis-
tration’s Mini-Sentinel drug safety surveillance program.
In Section 5, we compare methods in simulation studies.
We present some concluding remarks in Section 6.

2. Causal parameter and identifiability

To define a target causal parameter we are interested in,
we use the potential outcomes framework, also known as
the NeymaneRubin causal model [4e6]. We begin by de-
fining Y1 and Y0 as potential outcomes for a patient had the
patient received treatment 1 or treatment 0 (sometimes no
treatment or placebo), respectively. The average treatment
effect (ATE) is defined as EðY1 � Y0Þ, where E denotes ex-
pectation with respect to the distribution of potential out-
comes for the population of interest. For a particular
patient, one of Y1 or Y0 is unobservable and is called coun-
terfactual. Other causal parameters can be defined, such as
the causal odds ratio or risk ration when the outcome is bi-
nary, but we focus on the ATE in this article.

Define the observed data O5fW ;A; Yg, where W repre-
sents baseline characteristics of a patient, A is 1 if the patient
receives the target treatment of interest or 0 if she receives the
comparator or control treatment, and Y is the patient’s ob-
served outcome. We observe n independent and identically
distributed copies ofO. We assume Y5 YA, the potential out-
come under the drug that patient actually received, which is
known as the consistency assumption. To be able to estimate
ATE, we need to write it as a function of the observed data
distribution. If we can do this, we say the ATE is identifiable.
Because the ATE depends on unobserved potential out-
comes, identifiability requires some assumptions. The first,
known as the randomization assumption, is that given a set
of baseline covariates W, the treatment A is independent of
the potential outcomes Y1 and Y0. This is also called the
‘‘no unmeasured confounders’’ assumption. The second is

the positivity assumption, in which we assume that for any
value of baseline characteristicsW, it is possible to receive ei-
ther treatment, or 0!PðA51jWÞ!1 for all W, where P de-
notes probability. Under these assumptions, then we can
write

EðY1 � Y0Þ5E½EðY jA51;WÞ
�EðY jA50;WÞ�5j0; ð1Þ

so the ATE is equal to a statistical parameter that is a func-
tion of only the observed data distribution. A proof of iden-
tifiability is provided in Section 2 of the Appendix (see at
www.jclinepi.com) for pedagogical purposes, but the result
is well known [6e8]. The selection of variables to be in-
cluded in W requires careful consideration and is discussed
in more detail by Greenland et al. [9], Pearl [6], and Ho-
wards et al. [10].

3. Estimation

To estimate the causal effect, in addition to the random-
ization and positivity assumptions, we need to specify a sta-
tistical model or a set of possible probability distributions
for the observed data O. A probability distribution for O
can be factorized into the distribution of Y given A and
W, the distribution of A given W, and the distribution of
W. Because in an observational study we generally do not
have enough knowledge about the data to posit a parametric
model, we will put no restrictions on the distribution of the
data and use the nonparametric model. In other settings, we
may have knowledge that lets us use a more restrictive or
even parametric model; for example, in a randomized con-
trolled trial, we know that treatment is independent of the
covariates. Knowledge such as this can be incorporated into
the statistical model.

Traditional methods for estimating j0 are usually based
on an estimate of EðY jA;WÞ, which we call the outcome re-
gression, or are based on an estimate of the probability of be-
ing treated given baseline covariates, PðA51jjWÞ, known as
the PS [8]. Using an estimate of the outcome regression, j0

can be estimated using the G-computation formula discussed
in theAppendix (see at www.jclinepi.com). Estimators based
on the G-computation formula are called plug-in estimators.
In general, the coefficient on the treatment variable in an out-
come regression cannot be interpreted as a marginal causal
effect, but when the regression is correctly specified, it can
be used to test the null hypothesis j05 0. Common PS-
based methods to estimate j0 include inverse probability of
treatment-weighted estimators (IPTW) [11] and PSmatching
estimators [8,12], discussed in the Appendix (see at www.
jclinepi.com).

For outcome regression methods and PS-based methods
to consistently estimate the parameter j0, the initial estima-
tor for the outcome regression or the PS must be consistent.
By consistent, we mean that as the sample size increases,
the estimator converges (in probability) to the true function,
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