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a b s t r a c t

In this paper we present an hybrid approach for solving the time-dependent multimodal transport prob-
lem. This approach has been tested on realistic instances of the problem providing an adequate balance
between computation time and memory space. This solution can be applied to real transport networks in
order to reduce the impact of traffic congestion on pollution, economy, and citizen’s welfare. A compar-
ison with two previous approaches are given from theoretical point of view as well as experimental
performance.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the daily mobility of passenger and goods has be-
come a very important problem in our society. Traffic congestion
produces a direct impact on the economy, causes an increase of
pollution, and reduces citizens’ welfare. According to the recent
data available, in Beijing (China) the road transport sector gener-
ates 23% of the total air pollution (Zhao, 2009), close behind the
industrial sector, while in the European Union the transport emis-
sions are accounted for around 20% of total greenhouse gas emis-
sions (Bart, in press). In US, urban traffic congestion caused
during 2007 a waste of fuel equal to $87.2 billion as well as 4.2 bil-
lion hours of transport delay (Schrank & Lomax, 2009).

There are different policy options for dealing with this men-
tioned problem. In order to avoid that urban development becomes
exclusively car-oriented, one of the measures consists in improving
the quality of public transport and encouraging its use (Bart, in
press). However, greater effectiveness can be reached through
combining the different private and public transport means, spe-
cially in big cities and in interregional scenarios.

Multimodal transport, the combination of public and private
transport modes, has been addressed by several authors in the re-
search community. For solving the multimodal transport problem
(MTP) different abstractions are proposed, generally based on the
concept of graph theory: hypergraphs (Lozano & Storchi, 2001),

hierarchical graph (Bielli, Boulmakoul, & Mouncif, 2006), and clas-
sical multigraph (Lo, Yip, & Wan, 2003). Besides, several algorithms
to compute the shortest path for the MTP are given in the litera-
ture. The Dijkstra algorithm is the most used approach (Kamoun,
Uster, & Hammadi, 2005; Zidi, 2006), while other algorithms like
the label correcting algorithm (Lozano & Storchi, 2002; Ziliaskopo-
ulos & Wardell, 2000), Breadth-First search (Fragouli & Delis, 2002)
and heuristic algorithms (Chang, 2008; Chiu, Lee, Fung Leung, Au, &
Wong, 2005; Li & Kurt, 2000) are also investigated.

Despite the great effort done in this field, the complexity of the
MTP has not been fully addressed. In realistic scenarios, traveling
cost (e.g., time, price, comfort) depends on time, and thus the opti-
mal solution. This time-dependent multimodal transport problem
(TMTP) is more complex for solving, since it contemplates different
transport modes available and their schedules. In fact, there exist
few works that take into account this constraint (Bielli et al.,
2006; Galvez-Fernandez, Khadraoui, Ayed, Habbas, & Alba, 2009;
Ziliaskopoulos & Wardell, 2000).

In our previous works we have developed a solution for solving
TMTP. In Galvez-Fernandez et al. (2009) an alternative abstraction
to model time-dependent multimodal networks called transfer
graph was presented as well as an approach for this abstraction.
Two implementations of this approach were proposed. A variant
of Dijkstra algorithm was developed in Galvez-Fernandez et al.
(2009). It provides better performance in terms of computation
time than other algorithms in the literature. Nevertheless, the re-
quired memory space makes it unfeasible to apply on big-sized
transport networks. In Ayed, Habbas, and Khadraoui (2009), we
present a second solution that uses Ant Colony Optimization
(ACO) metaheuristic (Dorigo, Birattari, & Stntzle, 2006). It requires
less memory space but increases the computation time.
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In this paper a new approach for the TMTP is proposed, which is
based on Dijkstra and ACO. Its main contribution is to provide an
adequate balance between computation time and space. Therefore,
this solution can be scalable and applied to realistic scenarios
involving several cities, regions or countries.

The outline of this paper is the following. Section 2 gives some
definitions and presents the transfer graph model. Next, in Section
3 we introduce the relevant graph approach for computing the
shortest path in transfer graph and two implementations based on
Dijkstra and ACO, concluding with the benefits and drawbacks of
both strategies. Then, we present the new algorithm for TMTP in Sec-
tion 4 and we prove that is correct with respect to the relevant graph
approach in Section 5. Next, in Section 6 some experiments outline
the performances of this new approach. In Section 7 we compare
the hybrid approach with other existing approaches proposed in
the literature. This paper finishes with conclusions in Section 8.

2. The transfer graph model

In this section we present the transfer graph, a graphical structure
that abstracts the time-dependent multimodal transport network.
The main advantage of this model is that it adapts to the distributed
nature of real-world transport information providers since it sepa-
rates and keeps all transport modes in different unimodal networks.
Another benefit of this abstraction is that each unimodal network
can be easily and independently updated without requiring any fur-
ther recalculation (Galvez-Fernandez et al., 2009).

2.1. Definitions

Let G = (V,E,M) denotes a multimodal directed graph or net-
work, where V = {v1, . . .,vj} is a set of vertices, M = {m1, . . . ,mk} is a
set of transport modes (e.g., train, bus, and car), and E = {e1, . . . ,el}
is a set of edges. An edge el 2 E can be identified by ðvp;vqÞmr

,

where vp, vq 2 V and mr 2M. The el expresses that it is possible to
go from vertex vp to vq by using transport mode mr. A value cel

is
associated to each edge el, indicating the cost of including the edge
in the solution (e.g., distance or time).

Definition 1 (Multimodal path). Given a multimodal graph
G = (V,E,M), a path pv1 :vk

=(v1 ? vk) is a sequence of edges between
a pair of vertices v1 and vk; ððv1;v2Þm1

; . . . ; ðvk�1; vkÞmk�1
Þ, where

8i; j 2 f1; . . . ; kgv i;v j 2 V ; ðv i; v iþ1Þmi
2 E;mi 2 M, and

i – j() v i – v j.

Definition 2 (Travel). Given a path pv i :v j
¼ ðv i ! v jÞ or an edge

ðv i;v jÞmk
, a travel is defined as a pair of times ðtv i

; tv j
Þ where tv i

denotes the departure time from vertex vi and tv j
the arrival time

at vj.

Definition 3 (Time-dependent multimodal graph, TDMG ). We
define G = (V,E,M,T) as a time-dependent multimodal graph, where
V is the set of vertices, E the set of edges, and M the set of modes.
Each ei 2 E is associated to a set of travels sei

¼ fðts1 ; ta1 Þ;
. . . ; ðtsk

; tak
Þg, being jsei

j ¼ k P 1 and tsj
6 taj

; 8j 2 f1; . . . ; kg. T is
defined as the set of all travels, T ¼

S
ei2Esei

.

Definition 4 (Time-dependent cost). If P is the set of paths in a
graph G, the function f(p, to), f:P � T ? R, represents the cost of
the path p departing at time to. The cost of edges is considered to
be time-dependent, i.e., "ei 2 E and j, l 2 {1, . . . ,k} we can have
cei
ðtjÞ – cei

ðtlÞ.

Definition 5 (Shortest path problem in TDMG). Given a graph
G = (V,E,M,T), two vertices s,d 2 V and a departure time
t0 2 {t1, t2, . . . , tl}, the shortest path problem (SPP) in time-depen-
dent multimodal graph consists in calculating a path p from vertex
s to d, departing at t0 where f(p, t0) is minimal. This is called the
shortest path (SP).

Nomenclature

MTP multimodal

Transport problem
TMTP time-dependent multimodal transport problem
ACO ant colony optimization
G = (V,E,M) multimodal directed graph
V set of vertices for the graph G = (V,E,M)
M set of transport modes for the graph G = (V,E,M)
E set of edges for the graph G = (V,E,M)
pv1 :vk

a path from vertex v1 to vertex vk

ðtv i ; tv j Þ travel departing at time tv i and arriving at tv j

TDMG time-dependent multimodal graph
T set of travels for a G = (V,E,M,T)
cei ðtjÞ the cost of the edge ei at time tj

SP the shortest path
Tg = (C,Tr) transfer graph
C = {C1,C2, . . . ,Ck} the set of monomodal time-dependent graphs
Tr the set of virtual edges
TVi the set of all transfer vertices
P the set of all paths for a graph
f(p, to) the cost function for the path p departing at time to

SPP shortest path problem
P�ks:d the set of SPs from vertex s to vertex d using the

component Ck

P�ks:� the set of SPs from the vertex s to all transfer vertex
using the component Ck

P�kþ:� the set of SPs which start and end at any transfer ver-
tex within Ck

P�kþ:d the set of SPs which start at any transfer vertex and
end at vertex d within Ck

Rg = (Vg,Eg) relevant graph
Vg the vertex set of relevant graph
Eg the edge set of relevant graph
E�(vi) the incoming edges of vertex vi

E+(vi) the outgoing edges of vertex vi

to current time
p((i, j)t) the probability of choosing the edge (i, j) at time t
st
ði;jÞ the pheromone value of cij at t

gt
ði;jÞ ¼ 1

costðcijÞ a parameter for computing the probability of choos-
ing the edge (i, j) at time t

cost(i, j) the cost of the current path if the edge (i, j) is added

s
ðtv i

;tvj
Þ

ij the pheromone value for the edge (i, j) within the tra-
vel ðtv i ; tv j Þ

c pheromone updating rate parameter
d pheromone updating rate parameter
q pheromone evaporization parameter
RAM random access memory
CPU central processing unit
LP the set of local paths in all components
Ag = (VA,EA) abstract graph
VA the vertex set of abstract graph
EA the edge set of abstract graph
RIg = (NIg,EIg) relevant intergraph
NIg = VA

S
{s,d} the vertex set of the Relevant intergraph

EIg the vertex set of the relevant intergraph
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