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Simple lifted cover inequalities and hard knapsack problems
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Abstract

Weconsideraclassof randomknapsack instancesdescribedbyChvátal,whoshowed thatwithprobability going to1, such instances
require an exponential number of branch-and-bound nodes. We show that even with the use of simple lifted cover inequalities, an
exponential number of nodes is required with probability going to 1.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

It is not surprising that there exist integer programming (IP) instances for which solution by branch-and-bound
requires an exponential number of nodes, since integer programming is an NP-complete problem while the linear
programs solved at each branch-and-bound node are polynomially solvable. Examples of such instances were given by
Jeroslow[5], who presented a set of simple instances of the knapsack problem which require an exponential number
of branch-and-bound nodes when branching on variables, and by Chvátal[1], who considered a class of random
instances of the knapsack problem and showed that with probability converging to 1, such a random instance requires
exponentially many branch-and-bound nodes to solve.
Most modern IP solvers use branch-and-cut algorithms, which combine branch-and-bound with the use of cutting

planes. Gu et al.[4] considered solving the knapsack problem with branch-and-cut. They presented a set of instances
that require an exponential number of branch-and-boundnodes evenwith the addition of simple lifted cover inequalities.
More recent work in proving exponential worst-case bounds in the presence of various cutting planes has been done
by Dash[2], who proved worst-case exponential bounds in the presence of lift-and-project cuts, Chvátal–Gomory
inequalities, and matrix cuts as described by Lovász and Schrijver.
The work of Gu et al. and Dash is similar to Jeroslow’s work in that specific “worst-case” examples are presented. In

this paper we build on Chvátal’s results, which are concerned with average-case performance over a class of random
instances.We add all simple lifted cover inequalities to his formulation and show that an exponential number of branch-
and-bound nodes is required with probability converging to 1. This result is not suggested by the NP-hardness of binary
knapsack problems, because cover inequality separation for these problems is NP-hard[6].
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1. Statement of the result

Following Chvátal[1], we consider the following class of knapsack instances:

max
n∑

i=1

aixi

s.t.
n∑

i=1

aixi �
⌊∑n

i=1ai

2

⌋
(1)

xi ∈ {0,1}, i = 1, . . . , n,

where the coefficientsai are integers selected independently and uniformly such that 1�ai �10n/2.
For ease of discussion, we denote the right-hand-side of the inequality byr ≡ �∑n

i=1ai/2� and the upper bound on
coefficients byB ≡ 10n/2.
Rather thana standard branch-and-bound framework,Chvátal considereda slight generalization, a class of algorithms

that he calledrecursive algorithms. These have the capabilities of branching, fathoming, dominance, and improving the
current solution. In particular, branching is performed on a single variable, though the selection of branching variable
and the process of exploring nodes may be arbitrary. In terms of branch-and-bound, dominance allows the removal of
a node if there is another node with the same set of fixed variables that has—considering only the fixed variables—at
least as much slack in the constraint and at least as good an objective value. For a precise definition of this class of
algorithms, see[1].
We will present our results using the language of branch-and-bound, though our results do apply to Chvátal’s class

of recursive algorithms.

Theorem 1 (Chvátal). With probability converging to1 asn → ∞, every recursive algorithm(as described in the
previous paragraph) operating on an instance of(1)will create at least2n/10 nodes in the process of solving.

For a knapsack problem with constraint
∑n

i=1aixi �b, a cover is a setC ⊆ {1, . . . , n} such that
∑

i∈Cai > b. A
minimal coveris a coverC such that no subsets ofC are covers. A minimal coverC defines the followingcover
inequality, which is a valid inequality for the knapsack problem:∑

i∈C
xi � |C| − 1.

Although cover inequalities are not facet-defining in general, they can be strengthened to form facet-defining in-
equalities through a process calledlifting. We will consider a special case of a lifted cover inequality called asimple
lifted cover. Given a coverC, a simple lifted cover inequality has the form∑

i∈C
xi +

∑
i /∈C

�ixi � |C| − 1.

The values�i are calledlifted coefficientsand are determined through a process calledsequential lifting. See Gu
et al.[3] or Wolsey[8] for discussions of lifted cover inequalities. Here we describe the process briefly for simple lifted
cover inequalities.

Definition 2. The sequential lifting process for simple cover inequalities is as follows. LetC be the cover. Let the
indices not inC be ordered arbitrarilyi1, i2, . . . , im.

1. InitializeK = ∅, a = 1.
2. Letj = ia .
3. Determine lifted coefficient�j as follows:

�j = |C| − 1−max

{∑
i∈C

xi +
∑
k∈K

�kxk : x ∈ S, xj = 1

}
, (2)

whereS is the set of feasible integer solutions to the original knapsack problem.
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