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a b s t r a c t

We consider the use of Independent Base Stock (IBS) replenishment policies in Assemble-to-Order (ATO)
inventory systems. These policies are appealingly simple and widely used, but generally suboptimal for
systems with non-identical lead times. We present an IBS policy and prove that its loss of optimality is
limited by the ratio of the longest lead time to the shortest one. Our results suggest that IBS policies can
work well for systems where differences between lead times are dominated by their lengths.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Assemble-to-Order (ATO) manufacturing keeps inventory at
the component level and assembles a final product only after
the demand for it has arrived. Managing an ATO inventory
system involves two control policies. The replenishment policy
determines the ordering of components. The allocation policy
distributes components to serve different demands. Minimizing
the long-run average expected total inventory cost is a common
objective that we consider in this paper.

Independent base-stock (IBS) policies are probably the most
popular replenishment control schemes (e.g., see [9] for a review
of the related literature). An IBS policy keeps each component’s
inventory position, defined as the difference between its on-
hand plus on-order inventory and its backlog, at a constant level
for all time. In systems with identical replenishment lead times,
IBS policies can be asymptotically optimal in the long-lead time
or high-volume asymptotic regimes [6]. They also perform well
outside these regimes and are even optimal in some special
cases [2].

IBS policies become inadequate in systems with non-identical
lead times, even for those that contain only one product [7,11].
Nevertheless, finding a better alternative is also hard. Policies
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that vary inventory positions of some components to satisfy
certain optimality criteria have been considered [3,5,7], but their
developments have been so far limited to systems with special Bill
ofMaterials (BOM). As a result, base stock policies, such as the ones
that Ignore Simultaneous Stock-outs (ISS) of components [10],
are still commonly employed in practice. This paper considers a
family of IBS policies with different choices of base stock levels
from existing schemes such as ISS. We show that in many ATO
systemswith a general BOMand deterministic but different lead times,
these policies keep the long-run average inventory cost close to its
minimum.

Previous studies have used stochastic programs (SP) to set
a lower bound on the average inventory cost of ATO systems
[5,6,10]. We start from a similar launching pad by formulating an
SP and proving its optimal solution is below the inventory cost
under any feasible policy. However, unlike the bound in [5], ours
is based on a two-stage SP instead of a K + 1 stage SP (where K is
the number of different lead times). Unlike the bound in [6], ours
applies to systems with any number of distinct lead times rather
than one lead time only. Unlike the bound in [10], ours covers all
feasible policies, not just IBS policies. Inventory control is optimal if
it keeps the total expected cost at the lower bound for all time. This
happens if, in the ATO system, the replenishment policy replicates
the probability distribution of ‘component balance’ (which we
define at the beginning of Section 4.2) of the first stage of the SP;
and for any given realization of component balance, the allocation
policy replicates the outcome of the second stage of the SP (a
condition we refer to as perfect allocation).
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A perfect match of component balance between an ATO system
with nonidentical lead times and its corresponding SP is generally
impossible. Our key result, Theorem 2 presents an upper bound on
the cost impact of the mismatch for systems under control of our
IBS policy. The bound provides a useful performance assessment of
the cost of following IBS policies in general. Moreover, for systems
where variations of component lead times are dominated by their
lengths, the bound implies that our policy entails little loss of
optimality. Hence, the cost objective stays close to the achievable
minimum under perfect allocation, which is attainable in some
special cases [2,4,5].

While perfect allocation is unattainable in general ATO systems,
a family of asymptotically-optimal allocation policies has been
developed in [6]. These policies involve solving a certain linear
program, whose parameters depend on the current state of
the system (Section 5 provides more details). For systems with
identical lead time, the percentage difference of the long-run
average inventory cost between these policies and the perfect
allocation converges to zero as the lead time grows [6]. We
consider a joint use of these allocation policies and our IBS
replenishment policy in systems with nonidentical lead times. We
prove that the combination is asymptotically optimal as the lead
times grow while their differences grow at a slower rate.

The rest of the paper is divided into four sections.We define the
problem in Section 2, present our IBS policy in Section 3, derive the
lower bound and carry out performance analysis in Section 4, and
conclude the paper with a discussion on the implications of our
results in Section 5.

2. Problem formulation

We develop our analysis for the continuous-review formula-
tion. Our results also extend to the periodic-reviewmodel by anal-
ogous arguments.

We consider ATO systems withm products, n components, and
a non-negative integer matrix A as its BOM. Here aji denotes the
amount of component j (1 ≤ j ≤ n) used by product i (1 ≤ i ≤ m),
so row j of A, denoted by Aj, represents the usage of components
j (1 ≤ j ≤ n) by all products. There are K distinct lead times
with LK > LK−1 · · · > L1 > 0, and we use kj (kj = 1, . . . , K)
to refer to the index of the lead time of component j. Let n0 = 0
and nk be the number of components with lead time Lk or shorter
(1 ≤ k ≤ K ), so nK = n. Let components be indexed according to
the ascending order of their lead times, so {nk−1 +1, . . . , nk} is the
index set of components with lead time Lk(1 ≤ k ≤ K). The usage
of components with lead time Lk is given by Ak, which is a sub-
matrix of A that contains rows j = nk−1 +1, . . . , nk (k = 1, . . . , K)
and columns i = 1, . . . ,m.

Demand arrives according to a compound Poisson process. The
number of orders during the time interval [0, t] is denoted by
Λ(t) (t ≥ 0) and λ = E[Λ(1)] is the order arrival rate. There
is an associated i.i.d. sequence of random vectors that provide
order sizes. A generic element of this sequence is denoted by S =

(S1, S2, . . . , Sm), where Si is the order size of product i, 1 ≤ i ≤ m.
We assume that S has a finite secondmoment. (In Section 5, for one
of our results we assume that S has a finite moment of order 2 + δ
where δ is a positive value that can be arbitrarily small.) The total
demand during [0, t] is denoted by

D(t) = (D1(t), . . . ,Dm(t))′, t ≥ 0,

with E[D(1)] = µ < ∞. Define

D(t1, t2) = D(t2)− D(t1), 0 ≤ t1 ≤ t2,

as the demand in the interval (t1, t2]. For t ≥ LK , let

Dk(t) = D(t − Lk, t − Lk−1), 1 ≤ k ≤ K , and
D̄k(t) = D(t − LK , t − Lk), 0 ≤ k ≤ K ,

where L0 = 0 (note that D̄0(t) = D(t − LK , t)). Since the demand
process is stationary, we can define random vectorsDk and D̄k such
that

Dk d
= Dk(t) (1 ≤ k ≤ K) and

D̄k d
= D̄k(t) (0 ≤ k ≤ K), t ≥ LK .

Let Rj(t) be the quantity of component j ordered from the
supplier between time −Lkj and time t for t ≥ −Lkj and define

R(t) = (R1(t), . . . ,Rn(t))′, t ≥ 0.

Denote the total quantity of demand served during [0, t] by

Z(t) = (Z1(t), . . . ,Zm(t))′, t ≥ 0.

Similarly, for 1 ≤ k ≤ K , denote

Rk(t) = R(t)− R(t − Lk) and Zk(t) = Z(t)− Z(t − Lk),
t ≥ 0.

We consider a backlogmodel and denote the backlog levels at time
t by B(t) = (B1(t), . . . , Bm(t))′, and the per-unit backlog costs
by b = (b1, . . . , bm)′. Denote the inventory levels of components
with lead time Lk by Ik(t) = (Ink−1+1(t), . . . , Ink(t))

′, and the cor-
responding unit inventory holding costs by hk

= (hnk−1+1, . . . hnk)
′

(1 ≤ k ≤ K). Let

I(t) = (I1(t), . . . , In(t))′ (t ≥ 0) and h = (h1, . . . , hn)
′

be concatenations of vectors Ik(t) (1 ≤ k ≤ K) and hk (1 ≤ k ≤ K)
respectively. Changes of backlog and inventory levels are governed
by

B(t) = B(t − Lk)+ D(t − Lk, t)− Zk(t), 1 ≤ k ≤ K , t ≥ LK ,
and Ik(t) = Ik(t − Lk)+ Rk(t − Lk)− AkZk(t), 1 ≤ k ≤ K , t ≥ LK .

(1)

The objective is to minimize the long-run average expected
inventory cost

C ≡ lim sup
T→∞

1
T

 T+LK

LK
C(t)dt, (2)

where C(t) = b · E[B(t)] + h · E[I(t)] = b · E[B(t)]

+

K
k=1

hk
· E[Ik(t)].

In our discussion below, for any positive integer l, Rl and R+

l
respectively denote the sets of l-dimensional real vectors and non-
negative real vectors.

3. Policy development

We define an IBS replenishment policy with the following base
stock levels

Yk
= yk∗ + (Lk − L1)Akµ, 1 ≤ k ≤ K . (3)

Here yk∗ = (y∗

nk−1+1, . . . , y
∗
nk)

′ (1 ≤ k ≤ K) are subvectors of
y∗

= (y∗

1, . . . , y
∗
n)

′, the optimal solution of the following two-stage
stochastic program (SP)

Φ̃ = min
y∈Rn

{h · y + E[Φ̃0(y,D1)]} (4)

where Φ̃0(y, x) = −max
z∈Rm

{c · z|z ≤ x, Az ≤ y}, (5)

and c = b + ATh. Our policy is a generalization of an IBS policy
defined in [6]. In [6], all components have the same lead time
L1, and yk∗ (1 ≤ k ≤ K) are prescribed as base stock levels to
serve demands occurring over a period of that length. These base
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