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a b s t r a c t

This paper studies continuous-time Markov decision processes under the risk-sensitive average cost
criterion. The state space is a finite set, the action space is a Borel space, the cost and transition rates are
bounded, and the risk-sensitivity coefficient can take any positive real number. Under themild conditions,
we develop a new approach to establish the existence of a solution to the risk-sensitive average cost
optimality equation and obtain the existence of an optimal deterministic stationary policy.
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1. Introduction

Continuous-time Markov decision processes (CTMDPs) have
wide applications, such as the queueing systems, control of the
epidemic, telecommunication, population processes, inventory
management; see, for instance, [6,8,9]. The expected average cost
criterion is a commonly used optimality criterion in the theory
of CTMDPs and has been widely studied under the different
sets of optimality conditions; see, for instance, [6,9,10] and the
references therein. The random costs incurred during the finite
time interval are evaluated by themathematical expectation in the
definition of the expected average cost criterion. In other words,
the expected average cost criterion assumes that the decision-
makers are risk-neutral. However, different decision-makers may
have different risk preferences in the real-world applications.
Hence, it is necessary for us to consider the attitude of a decision-
maker towards the risk in the definition of the average cost
criterion. As is well known, the utility function is an important
tool to characterize the risk preferences of the decision-makers.
In particular, the exponential utility function is a commonly used
utility function and has been applied to reflect the risk attitudes
of the decision-makers towards the random costs incurred in the
MDPs; see, for instance, [2–4,7] for discrete-time MDPs and [5] for
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CTMDPs. The average optimality criterion in [2–5,7] is called risk-
sensitive average cost criterion because the risk preferences of the
decision-makers are taken into consideration. To the best of our
knowledge, [5] is the first work to study the risk-sensitive average
cost criterion for CTMDPs. The state space is a denumerable set,
the cost rate function is nonnegative and bounded, the transition
rates are bounded and satisfy the irreducibility condition and
some Lyapunov-like inequality, and the risk-sensitivity coefficient
of the exponential utility function is positive and satisfies some
additional relation in [5].

In this paper we further study the risk-sensitive average
cost criterion in the class of all randomized Markov policies for
CTMDPs. The state space is a finite set and the action space is
a Borel space. The cost rate function is bounded and allowed to
take both nonnegative and negative values. The transition rates
are bounded and the risk-sensitivity coefficient is allowed to
take any positive real number. Under the irreducibility condition
and the continuity and compactness conditions, we employ a
new approach to establish the existence of a solution to the
risk-sensitive average cost optimality equation, from which the
existence of optimal policies is shown. More precisely, we first
introduce an auxiliary risk-sensitive first passage optimization
problem and obtain the properties of the optimal value function
of the risk-sensitive first passage problem (see Theorem 3.1).
Then using the Feynman–Kac formula and the results on the risk-
sensitive first passage optimization problem, we show that the
pair of the optimal value functions of the risk-sensitive average
cost criterion and the risk-sensitive first passage problem is a
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solution to the risk-sensitive average cost optimality equation and
that there exists an optimal deterministic stationary policy in the
class of all randomized Markov policies (see Theorem 3.2). As
far as we can tell, the risk-sensitive first passage optimization
problem for CTMDPs is discussed for the first time in this paper.
Moreover, since we remove the nonnegativity of the cost rate
function, the Lyapunov-like inequality imposed on the transition
rates and the additional relation required for the positive risk-
sensitivity coefficient in [5], the optimality conditions in this paper
are weaker than those in [5] except that the state space is a finite
set. Furthermore, we deal with the risk-sensitive average cost
criterion in a more general class of policies than that in [5] which
investigates this criterion in the class of all deterministic stationary
policies.

The rest of this paper is organized as follows. In Section 2, we
introduce the decision model and the risk-sensitive average cost
criterion. In Section 3, we give the optimality conditions and the
main results whose proofs are presented in Section 4.

2. The decision model

The decision model we are concerned with is composed of the
following components

{S, A, (A(i), i ∈ S), q(j|i, a), c(i, a)},

where the state space S is a finite set endowed with the discrete
topology, the action space A is a Borel space with the Borel σ -
algebra B(A), and A(i) ∈ B(A) is the set of all admissible actions
in state i ∈ S. Let K := {(i, a)|i ∈ S, a ∈ A(i)} be the set of
all admissible state-action pairs. The real-valued transition rate
q(j|i, a) satisfies the following properties: (i) For each fixed i, j ∈

S, q(j|i, a) is measurable in a ∈ A(i); (ii) q(j|i, a) ≥ 0 for all
(i, a) ∈ K and j ≠ i; (iii)


j∈S q(j|i, a) = 0 for all (i, a) ∈ K .

The real-valued cost rate function c(i, a) is measurable in a ∈ A(i)
for each i ∈ S.

A continuous-time Markov decision process evolves as follows.
A decision-maker observes continuously the state of a dynamical
system. When the system is in state i ∈ S, an action a ∈ A(i) is
chosen by the decision-maker according to some decision rule and
such an intervention has the following consequences: (i) a cost is
incurred at the rate c(i, a); (ii) the system remains in the state i for
a random time following the exponential distribution with the tail
function given by eq(i|i,a)t , and then jumps to a new state j ≠ iwith
the probability −

q(j|i,a)
q(i|i,a) (we make a convention that 0

0 := 0).
Let S∞ := S ∪ {i∞} with an isolated point i∞ ∉ S, R+ :=

(0, +∞), Ω0
:= (S × R+)∞, Ω := Ω0

∪ {(i0, θ1, i1, . . . , θm−1,
im−1, ∞, i∞, ∞, i∞, . . .)|i0 ∈ S, il ∈ S, θl ∈ R+ for each 1 ≤

l ≤ m − 1, m ≥ 2}, and F be the Borel σ -algebra of Ω . For
each ω = (i0, θ1, i1, . . .) ∈ Ω , define X0(ω) := i0, T0(ω) :=

0, Xm(ω) := im, Tm(ω) := θ1 + θ2 + · · · + θm form ≥ 1, T∞(ω) :=

limm→∞ Tm(ω), and the state process

ξt(ω) :=


m≥0

I{Tm≤t<Tm+1}im + I{t≥T∞}i∞ for t ≥ 0,

where ID denotes the indicator function of a set D. The process
after T∞ is regarded to be absorbed in the state i∞. Hence, we
write q(i∞|i∞, a∞) = 0, c(i∞, a∞) = 0, A(i∞) := {a∞}, A∞ :=

A∪{a∞}, where a∞ is an isolated point. LetFt := σ({Tm ≤ s, Xm =

i} : i ∈ S, s ≤ t,m ≥ 0) for t ≥ 0, Fs− :=


0≤t<s Ft , and P :=

σ({D×{0},D ∈ F0}∪{D×(s, ∞),D ∈ Fs−, s > 0})which denotes
the σ -algebra of predictable sets on Ω ×[0, ∞) related to {Ft}t≥0.

Nowwe introduce the definition of a randomizedMarkov policy
below.

Definition 2.1. A P -measurable transition probability π(·|ω, t)
on (A∞, B(A∞)), concentrated on A(ξt−(ω)) is called a random-
ized Markov policy if there exists a kernel ϕ on A∞ given S∞ ×

[0, ∞) such that π(·|ω, t) = ϕ(·|ξt−(ω), t). A policy π is said to
be deterministic stationary if there exists a function f on S∞ satis-
fying f (i) ∈ A(i) for all i ∈ S∞ and π(·|ω, t) = δf (ξt−(ω))(·), where
δx(·) is the Dirac measure concentrated at the point x.

The set of all randomized Markov policies and the set of
all deterministic stationary policies are denoted by Π and F ,
respectively.

For any initial state i ∈ S and any π ∈ Π , Theorem 4.27 in [8]
gives the existence of a unique probability measure Pπ

i on (Ω, F ).
Moreover, the expectation operator with respect to Pπ

i is denoted
by Eπ

i .
Fix an arbitrary risk-sensitivity coefficient λ > 0 throughout

this paper. For any i ∈ S and π ∈ Π , the risk-sensitive average
cost criterion is defined by

J(i, π) = lim sup
T→∞

1
λT

ln Eπ
i


eλ
 T
0

A c(ξt ,a)π(da|ξt ,t)dt


.

The corresponding optimal value function is given by

J∗(i) := inf
π∈Π

J(i, π) for all i ∈ S.

Definition 2.2. A policy π∗
∈ Π is said to be optimal if J(i, π∗) =

J∗(i) for all i ∈ S.

The main goals of this paper are to give the conditions for the
existence of optimal policies and to develop a new approach to
establish the existence of a solution to the risk-sensitive average
cost optimality equation.

3. The optimality conditions and main results

In this section, we establish the existence of a solution to the
risk-sensitive average cost optimality equation, from which the
existence of optimal policies can be shown. To this end, we first
introduce the following optimality conditions.

Assumption 3.1. (i) For each i ∈ S, the set A(i) is compact.
(ii) For each i, j ∈ S, the functions c(i, a) and q(j|i, a) are

continuous in a ∈ A(i).
(iii) For each f ∈ F , the corresponding continuous-time Markov

chain {ξt , t ≥ 0} is irreducible, which means that for any two
states i ≠ j, there exist different states j1 = i, j2, . . . , jm such
that q(j2|j1, f ) · · · q(j|jm, f ) > 0, where q(j|i, f ) := q(j|i, f (i)).

Remark 3.1. Assumption 3.1(i) and (ii) are the standard continuity
and compactness conditions which have been widely used in
CTMDPs; see, for instance, [5,6,10] and the references therein.
Moreover, Assumption 3.1(i) and the Tychonoff theorem imply
that F is compact and metrizable. Assumption 3.1(iii) is the so-
called irreducibility condition which is commonly used in the
average cost criterion; see, for instance, [6] for the expected
average case and [5] for the risk-sensitive average case.

In order to prove the existence of optimal policies, we introduce
the following notation.

For any fixed state z ∈ S, set τz := inf{t ≥ T1 : ξt = z} with
inf∅ := ∞. For each i ∈ S and f ∈ F , let c(i, f ) := c(i, f (i)). Below
we introduce a risk-sensitive first passage optimization problem
which has not been discussed in the existing literature. For each
g ∈ R := (−∞, ∞), i ∈ S and f ∈ F , we define

hg(i, f ) :=
1
λ
ln E f

i


eλ
 τz
0 (c(ξt ,f )−g)dt


and

h∗

g(i) := inf
f∈F

hg(i, f ).
(3.1)
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