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Exercising Control When Confronted by a (Brownian) Spider

Philip Ernst1,∗

Abstract

We consider the Brownian “spider,” a construct introduced in [4] and in [1]. In this note, the author proves

the “spider” bounds by using the dynamic programming strategy of guessing the optimal reward function

and subsequently establishing its optimality by proving its excessiveness.
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1. Introduction

In this note, we consider the Brownian “spider,” a process also known as the “Walsh” Brownian motion,

due to [4] and [1]. The Brownian spider is constructed as a set of n ≥ 1 half-lines, or “ribs,” meeting at

a common point, O. A Brownian motion on a spider starting at zero may be constructed from a standard

reflecting Brownian motion (|Wt|, t ≥ 0) by assigning an integer i ∈ {1, . . . , n} uniformly and independently

to each excursion which is then transferred to an excursion on rib i (here, i should be interpreted as the

index of the rib on which the next excursion occurs). It is helpful to think about the Brownian spider as a

bivariate process; the first coordinate of the process is reflecting Brownian motion and the second coordinate

of the process is the rib index. Formally, we define the Brownian spider process Zt as

Zt = (|Wt|, Rt) , t ≥ 0 (1)

where |Wt| is reflected Brownian motion and Rt is the rib on which the process is located at time t. |Wt|
can be decomposed into excursions away from 0 with endpoints tk s.t. |Wtk | = 0. Rt is constant between tk

and tk+1 for all i, and Rt = i means the excursion occurs on the rib i. We define the supremum of reflected

Brownian motion on each rib as

Si(t) = sup
{t: Rt=i}

|Wt|, t ≥ 0, i = 1, ..., n.
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