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Abstract

This note presents a theoretical analysis of disjunctive constraints featuring unbounded variables.
In this framework, classical modeling techniques, including big-M approaches, are not applica-
ble. We introduce a lifted second-order cone formulation of such on/off constraints and discuss
related constraint qualification issues. A solution is proposed to avoid solvers’ failure.
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1. Introduction

Disjunctions represent a key element in mixed-integer programming. One can start with basic
disjunctions coming from the discrete condition imposed on integer variables, e.g. (z = 0)∨ (z =

1), then consider more complex disjunctions of the form (z = 0 ∧ x ≥ 0) ∨ (z = 1 ∧ f (x) ≤ 0).
In mixed-integer linear programming, years of research have been devoted to study disjunctive
cuts based on basic disjunctions in Branch & Cut algorithms [12, 15, 2]. For more complex
disjunctions, especially in convex Mixed-Integer Nonlinear Programs (MINLPs), the disjunctive
programming approach [7, 10] consists of automatically reformulating each disjunction, with the
concern of preserving convexity.

In most real-life applications, decision variables are naturally bounded, or can at least be
bounded by a very slack bound without losing any interesting solutions. There are, however,
some cases where unbounded variables are necessary. In both [5] and [13], there appear mathe-
matical programs involving decision variables which represent step counters in an abstract com-
puter description. Unboundedness in these frameworks amounts to a proof of non-termination of
the abstract computer. Artificially bounding these variables deeply changes the significance of
the mathematical program. In [8], Guan et al. use unbounded on/off constraints to model support
vector machines.

Two main reformulation techniques exist for disjunctions in mathematical programming.
There is the “big-M” approach, introducing large constants allowing to enable/disable a given
constraint, and the convex hull-based formulations, aiming at defining the convex hull of each
disjunction.
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