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a b s t r a c t

We consider a dispatching system, where jobs with deadlines for their waiting times are assigned to FCFS
servers immediately upon arrival. The dispatching problem is to choose a server for each job so as to
minimize the probability of deadline violation. We derive an efficient deadline-aware policy in the MDP
framework by means of policy improvement, analyze it, and evaluate its performance with simulations.
We find that the new policy offers significant improvements over traditional heuristic policies.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In a job dispatching problem, the arriving jobs or customers are
routed to parallel servers immediately upon arrival. The routing
decision is irrevocable, i.e., a job cannot be moved to another
queue later. This setting arises in supercomputing and in many
applications run in cloud systems. The dispatching problem itself
is a very general dynamic decision problem, where the user must
take into account both the current state of the system, as well as
the anticipated future requests.

Several well-known dispatching policies can be found in the
literature. The join-the-shortest-queue (JSQ) policy was studied
by Haight [5] and has since then been shown to be optimal with
respect tomean delay in several settings, see, e.g., [13,4].When the
remaining service times are also available, but not the size of the
arriving job, the least-work-left (LWL) policy, that assigns the new
job to the server with the shortest backlog, is often optimal [3]. The
elementary Bernoulli split (RND) chooses the server independently
at random, and thus requires no state or any other information.
A better policy, that just needs only the last routing decision, is
round-robin [10].Most of the pastwork has focused onminimizing
the (weighted) mean delay.

In contrast, we focus on a cost structurewhere jobs have certain
deadlines. In particular, we assume a service level agreement in
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the form of maximum waiting time in queue. Jobs which end
up waiting longer than that incur a fixed penalty cost, and still
must be served. The quality of experience (QoE) is a closely related
notion. Typical cost or reward functions in the QoE context have
a sigmoid form: small delays yield a good experience, but above
a certain threshold (deadline), the experience suddenly falls to
a low quality category [9,1]. For interactive applications, such
as large-scale online services provided by Google, Facebook and
Amazon, subsecond response times are a common objective [11].
The deadline cost structure assumed here, defined by a single
threshold τ for the waiting time, corresponds to a first level
approximation for QoE.

Our main contributions are: (i) we derive new theoretical
results for the M/G/1 queue subject to a non-linear cost structure
(the so-called value function with respect to deadline violations)
that enable efficient dynamic dispatching policies; (ii) we observe
that the system may become unstable when blindly minimizing
the number of deadline violations even when the offered load is
ρ < 1; and (iii) we show how this can be avoided by a minor
modification in the cost structure, and how the resulting extra
term shows up in the policy. The new deadline-aware dispatching
policies are further evaluated numerically.

2. Model and notation

We consider n parallel FCFS servers, where server i processes
jobs at rate θi. In the uniform case, we can assume unit service
rates, θi = 1 for all i. Jobs arrive according to a Poisson processwith

http://dx.doi.org/10.1016/j.orl.2016.05.009
0167-6377/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.orl.2016.05.009
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.05.009&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:esa@hi.is
mailto:rrighter@ieor.berkeley.edu
http://dx.doi.org/10.1016/j.orl.2016.05.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


508 E. Hyytiä, R. Righter / Operations Research Letters 44 (2016) 507–513

rate λ and have i.i.d. sizes Xj ∼ X . Thus, the service time of job j if
assigned to server i is Xj/θi. We assume a service level agreement
(SLA) in the form of a maximum waiting time in queue τ , referred
to as the (soft) deadline. When this deadline is exceeded, W > τ ,
a fixed cost of 1 is incurred, and the job remains in the system and
must be served. In other words, the cost function is a step-function
of waiting time w, cτ (w) = I(w > τ), and the mean cost rate is
rτ = λ P{W > τ }. This is in contrast to rW = λ E[W ], the cost
rate with respect to mean waiting time. The dynamic optimization
task is to assign each job immediately upon arrival to one of the
n servers so as to minimize the long term incurred costs (i.e., the
fraction of jobs violating SLA). Jobs cannot be rejected.

3. Analysis of M/G/1-FCFS with deadlines

We start by analyzing a single M/G/1 queue, for which the
Pollaczek–Khinchine mean value result gives the mean waiting
time. In general, the distribution of the waiting time cannot be
expressed in simple terms except for the M/M/1-FCFS,

P{W > t} = ρ e−(µ−λ)t . (1)

3.1. Value functions

As the cost function is non-linear, also the so-called value
function becomes non-trivial. Formally, the value function is
defined as the expected difference in costs between a system that
is initially in a given state z and a system in equilibrium,

v(z) = lim
t→∞

E[Vt(z)− r t],

where the random variable Vt(z) denotes the costs the system
incurs during (0, t) when initially in state z, and r is the long-run
mean cost rate. The value function for the (mean) waiting time is
already available from [7],

vW (u)− vW (0) =
λu2

2(1− ρ)
. (2)

However, we are interested in the deadline violations. Let us start
with the following monotonicity result:

Lemma 1. The value function vτ (u) w.r.t. deadlines is a strictly
increasing function of the backlog u.

Proof. Consider two systems, system 1 initially in state u and
system 2 initially in state u + δ, δ > 0. Suppose the two systems
receive the same jobs during (0, t). For each such sample path,
Vt(u) ≤ Vt(u + δ), and for some non-negligible set Vt(u) <
Vt(u+ δ). Therefore vτ (u) < vτ (u+ δ). �

In passing, we note that the same holds also for every cost
structure where arriving jobs incur a cost that is a non-decreasing
function of the backlog u, thewaiting time, obtainedwith c(u) = u,
leading to (2).

For M/G/1-FCFS, we have the following result.

Proposition 1. For u ≥ τ , the value function is a linear function of
the backlog u,

vτ (u)− vτ (τ ) =
λ− rτ
1− ρ

(u− τ) =
λ P{W ≤ τ }

1− ρ
(u− τ). (3)

Proof. By the definition of the value function, vτ (u) = E[NA −

BArτ ] + vτ (τ ), where NA denotes the number of jobs that arrive
before the workload in the queue is τ , BA denotes the length of the
corresponding time interval, and rτ is the mean cost rate. By using

the result for themean busy period inM/G/1with an initial backlog
of u, E[B(u)] = u/(1− ρ), we have

E[BA] =
u− τ

1− ρ
,

and from PASTA, E[NA] = λ(u− τ)/(1− ρ), which together yield
the desired result. �

Referring to (2) and (3), we first note that the tail of vτ (u)
is linear, whereas with vW (u) it is quadratic. Moreover, vτ (u) is
sensitive to the shape of the job size distribution unlike vW (u), as
the mean cost rate rτ = λ P{W > τ } depends on it.

Corollary 2. When τ → 0+, the value function reduces to a straight
line

v0(u)− v0(0) = λ u. (4)

Proof. At the limit τ → 0, the mean cost rate r → λρ, and (4)
follows from (3). �

For u < τ , the situation unfortunately is more complex.

Proposition 2. For 0 < u < τ , the value function satisfies the
differential equation

v′τ (u) = −rτ + λ E[vτ (u+ X)− vτ (u)]. (5)

Proof. For a differential time interval δ, 0 < δ < u ≤ τ ,

vτ (u) = (0− rτ )δ + (1− λδ)vτ (u− δ)+ λδ [0+ E[vτ (u+ X)]] ,

which gives

vτ (u)− vτ (u− δ)

δ
= −rτ − λvτ (u− δ)+ λE[vτ (u+ X)],

and as δ→ 0, v′τ (u) = −rτ + λ (E[vτ (u+ X)] − vτ (u)). �

We note that the constant term, vτ (τ ), that appears in (3), does
not appear in (5). Therefore, as is customary with value functions,
we can set, e.g., vτ (0) = 0 or vτ (τ ) = 0.

Assuming vτ (u) is continuous at u = τ , as it is with Poisson
arrivals, we obtain from (3) and (5),

v′τ (τ
−) = −rτ + λ

E[X]
1− ρ

(λ− rτ ) =
λρ − rτ
1− ρ

. (6)

On the other hand, (3) immediately yields

v′τ (τ
+) =

λ− rτ
1− ρ

(7)

and thus v′τ (τ
+)− v′τ (τ

−) = λ is the difference in the cost rates in
states u = τ+ and u = τ−. Similarly, one can consider an empty
queue, which gives (details omitted for brevity)

v′τ (0) = 0. (8)

This implies the identity P{W > τ } = E[vτ (X)] − vτ (0). Fig. 1
illustrates a value function and its slope at these specific points.

3.2. M/M/1 queue in heavy-traffic

Let us next consider the classical M/M/1 queue with arrival rate
λ and service rate µ. Note that the mean cost rate converges to the
arrival rate, rτ → λ, as λ ↑ µ. However, given a finite initial state
u, there is some positive probability that some jobsmanage to start
their service before their deadline expires. In particular, it turns out
that the relative values are well-defined and remain finite at this
limit.
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