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a b s t r a c t

We show that finding lexicographically minimal n bases in a matroid can be done in polynomial time
in the oracle model. This follows from a more general result that the shifted optimization problem over
a matroid can be solved in polynomial time as well. We also solve these problems for intersections of
strongly base orderable matroids.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a connected graph and let n be a positive integer. Given
n spanning trees in G, an edge is vulnerable if it is used by all
trees. We wish to find n spanning trees with minimum number of
vulnerable edges. One motivation for this problem is as follows.
We need to make a sensitive broadcast over G. In the planning
stage, n trees are chosen and prepared. Then, just prior to the actual
broadcast, one of these trees is randomly chosen and used. An
adversary, trying to harm the broadcast and aware of the prepared
trees but not of the tree finally chosen,will try to harm a vulnerable
edge, used by all trees. So we protect each vulnerable edge with
high cost, and our goal is to choose n spanning treeswithminimum
number of vulnerable edges.

Here we consider the following harder problem. For k =

1, . . . , n, call an edge k-vulnerable if it is used by at least k of the
n trees. We want to find n lexicographically minimal trees, that is,
which first of all minimize the number of n-vulnerable edges, then
of (n − 1)-vulnerable edges, and so on. More precisely, given n
trees, define their vulnerability vector to be f = (f1, . . . , fn) with fk
the number of k-vulnerable edges. Then, n trees with vulnerability
vector f are better than n trees with vulnerability vector g if the
last nonzero entry of g − f is positive. (We remark that this order
is often used in the symbolic computation literature, where it is
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called reverse lexicographic, but for brevity we will simply call it
here lexicographic.) As a byproduct of our results, we show how
to find in polynomial time n lexicographically minimal spanning
trees, which in particular minimize the number of vulnerable
edges.

This problem can be defined for any combinatorial optimization
set as follows. For matrix x ∈ Rd×n, let xj be its jth column. Define
the n-product of a set S ⊆ Rd by

Sn := ×n S := {x ∈ Rd×n
: xj ∈ S, j = 1, . . . , n}.

Call two matrices x, y ∈ Rd×n equivalent and write x ∼ y if each
row of x is a permutation of the corresponding row of y. The shift
of matrix x ∈ Rd×n is the unique matrix x ∈ Rd×n which satisfies
x ∼ x and x1 ≥ · · · ≥ xn, that is, the unique matrix equivalent
to x with each row nonincreasing. Let |xj| :=

d
i=1 |xi,j| and |x| :=n

j=1 |xj| be the sums of absolute values of the components of xj

and x, respectively. The vulnerability vector of x ∈ {0, 1}d×n is

(|x1|, . . . , |xn|).

We then have the following nonlinear combinatorial optimization
problem.
Lexicographic combinatorial optimization. Given S ⊆ {0, 1}d and n,
solve

lexmin{(|x1|, . . . , |xn|) : x ∈ Sn}. (1)

The complexity of this problem depends on the presentation of the
set S. In [7], it was shown that it is polynomial time solvable for
S = {z ∈ {0, 1}d : Az = b} for any totally unimodular A and any
integer b. Here we solve the problem for matroids.
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Theorem 1.1. The lexicographic combinatorial optimization prob-
lem (1) over the bases of anymatroid given by an independence oracle
and any n is polynomial time solvable.

Our spanning tree problem is the special case with S the set of
indicators of spanning trees in a given connected graph with d
edges, and hence is polynomial time solvable.

We note that Theorem 1.1 provides a solution of a nonlinear
optimization problem over matroids, adding to available solutions
of other nonlinear optimization problems over matroids and
independence systems in the literature, see e.g. [2,3,8,9] and the
references therein.

We proceed as follows. In Section 2, we discuss the shifted com-
binatorial optimization problem and its relation to the lexicographic
combinatorial optimization problem. In Section 3, we solve the
shifted problem over matroids in Theorem 3.4 and conclude The-
orem 1.1. In Section 4 we discuss matroid intersections, partially
solve the shifted problemover the intersection of two strongly base
orderablematroids (which include gammoids) in Theorem4.3, and
leave open the complexity of the problem for the intersection of
two arbitrary matroids. We conclude in Section 5 with some final
remarks about the polynomial time solvability of the shifted and
lexicographic problems over totally unimodular systems from [7],
and show that these problems areNP-hard overmatchings already
for n = 2 and cubic graphs.

2. Shifted combinatorial optimization

Lexicographic combinatorial optimization can be reduced to the
following problem.
Shifted combinatorial optimization. Given S ⊆ {0, 1}d and c ∈ Zd×n,
solve

max{c x : x ∈ Sn}. (2)

The following lemma was shown in [7]. We include the proof
for completeness.

Lemma 2.1 ([7]). The Lexicographic Combinatorial Optimization
problem (1) can be reduced in polynomial time to the Shifted
Combinatorial Optimization problem (2).

Proof. Define the following c ∈ Zd×n, and note that it satisfies
c = c ,

ci,j := −(d + 1)j−1, i = 1, . . . , d, j = 1, . . . , n.

Consider any two vectors x, y ∈ Sn, and suppose that the vulner-
ability vector (|x1|, . . . , |xn|) of x is lexicographically smaller than
the vulnerability vector (|y1|, . . . , |yn|) of y. Let r be the largest in-
dex such that |xr | ≠ |yr |. Then, |yr | ≥ |xr | + 1. We then have

c x − c y = c x − c y =

n
j=1

(d + 1)j−1 
|yj| − |xj|


≥


j<r

(d + 1)j−1 
|yj| − |xj|


+ (d + 1)r−1

≥ (d + 1)r−1
−


j<r

d(d + 1)j−1 > 0.

Thus, an optimal solution x for problem (2) is also optimal for prob-
lem (1). �

We proceed to reduce the Shifted Combinatorial Optimization
problem (2) in turn to two yet simpler auxiliary problems. For a set
of matrices U ⊆ {0, 1}d×n let [U] be the set of matrices which are
equivalent to some matrix in U ,

[U] := {x ∈ {0, 1}d×n
: ∃ y ∈ U, x ∼ y}.

Consider the following two further algorithmic problems over a
given S ⊆ {0, 1}d:

Shuffling. Given c ∈ Zd×n, solve max{cx : x ∈ [Sn]}. (3)

Fiber. Given x ∈ [Sn], find y ∈ Sn such that x ∼ y. (4)

Lemma 2.2. The Shifted Combinatorial Optimization problem (2) can
be reduced in polynomial time to the Shuffling and Fiber problems (3)
and (4).

Proof. First solve the Shuffling problem (3) with profit matrix c
and let x ∈ [Sn] be an optimal solution. Next solve the Fiber
problem (4) for x and find y ∈ Sn such that x ∼ y. We claim that y
is optimal for the Shifted Combinatorial Optimization problem (2).
To prove this, we consider any z which is feasible in (2), and prove
that the following inequality holds,

c y = c x ≥ c x ≥ c z.

Indeed, the first equality follows since x ∼ y and therefore we
have y = x. The middle inequality follows since c is nonincreas-
ing. The last inequality follows since z ∈ Sn implies that z ∈ [Sn]
and hence z is feasible in (3). So y is indeed an optimal solution for
problem (2). �

3. Matroids

Let E be any finite set, in particular E = [d] := {1, . . . , d} or
E = [d] × [n]. We make the following definitions. The n-union of a
set S ⊆ {0, 1}E is defined to be the set

∨n S :=


x ∈ {0, 1}E : ∃x1, . . . , xn ∈ S, x =

n
k=1

xk


.

We call a set S ⊆ {0, 1}E a matroid if it is the set of indicators of
independent sets of a matroid over E. The following facts about n-
unions of matroids are well known, see e.g. [10].

Proposition 3.1. For any matroid S and any n we have that ∨n S is
also a matroid. Given an independence oracle for S, it is possible in
polynomial time to realize an independence oracle for ∨n S, and if
x ∈ ∨n S, to find x1, . . . , xn ∈ S with x =

n
k=1 xk.

Define the n-lift of a set of vectors S ⊆ {0, 1}d to be the
following set of matrices,

↑nS :=


x ∈ {0, 1}d×n

:

n
j=1

xj ∈ S


.

We need two lemmas.

Lemma 3.2. For any set S ⊆ {0, 1}d and any n we have the equality
[Sn] = ∨n ↑nS.

Proof. Consider x ∈ [Sn]. Then x ∼ y for some y ∈ Sn, and thus
yj ∈ S for j = 1, . . . , n. Since x ∼ y, each row of x is a permutation
of the corresponding row of y. Assume that the ith row of x is
given by the permutation πi of the corresponding row of y. That
is, xi,j = yi,πi(j). For k = 1, . . . , n, we define a matrix zk ∈ {0, 1}d×n

whose column sum satisfies
n

j=1 z
j
k = yk, by (zk)i,j := xi,j if

πi(j) = k, and otherwise (zk)i,j := 0. Since yk ∈ S, we conclude
that zk ∈ ↑nS. Since the supports of the zk are pairwise disjoint, we
have that

n
k=1 zk ∈ ∨n ↑nS. However,

n
k=1 zk = x by definition,

and thus x ∈ ∨n ↑nS.
In the other direction, assume that x ∈ ∨n ↑nS. Then, there

are x1, . . . , xn ∈ ↑nS such that x =
n

k=1 xk. That is, there are
x1, . . . , xn ∈ {0, 1}d×n such that for each k = 1, . . . , n, we have
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