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In this paper, we consider the multi-period single resource stochastic capacity expansion problem with
three sources of capacity: permanent, contract, and spot market. The problem is modeled as a multi-stage
stochastic integer program. We show that the problem has the totally unimodular property and develop
polynomial-time primal and dual algorithms to solve the problem.
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1. Introduction

Capacity expansion is mainly concerned with the optimal time
and amount of capacity acquisition, and the optimal capacity
allocation. Capacity expansion models can be found in a wide range
of applications as a strategic level decision, which usually involves
significant capital investments, as well as uncertainties in the
future forecasts. Traditionally, the models developed for capacity
expansion assume that there is only one type of capacity available
for acquisition. This capacity is purchased and permanently owned
by the decision maker and it is called permanent capacity.
However, in the real world, there could be other sources of capacity
that the decision maker can use. In this paper, we introduce two
commonly used sources of capacity available to decision makers
besides permanent capacity: spot market capacity, which refers to
the capacity that can only be purchased and used in the current
period, and contract capacity, which refers to the capacity that is
available in the current period—if a contract has been signed for it
in previous periods. The quantity of contract capacity is assumed
fixed in the contract. In this paper, we consider a multi-period
single resource stochastic capacity expansion problem where all
three sources of capacity exist simultaneously, and we model the
problem using the multi-stage stochastic programming approach.
It is noteworthy that our model can capture the case where the
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decision maker can sign contracts for an arbitrary number of
periods.

The capacity expansion problem and its extensions have been
extensively studied [8,12]. For single resource problems, Saniee
[11] modeled a deterministic multi-period problem as a time-
dependent knapsack problem. Laguna [4] extended this work to
the case of uncertain demand. Riis and Andersen [10] considered
the stochastic version of the single resource problem and proposed
a two-stage formulation. Huang and Ahmed [3] studied a multi-
stage stochastic version of capacity expansion for a single resource,
in which stochastic demand and cost are represented by a scenario
tree. Ahmed et al.[1] and Huang and Ahmed [3] also considered the
lot-sizing problem as a substructure of general capacity expansion
problems. However, all of these works only consider permanent
capacity.

There is a fairly small literature for capacity expansion in the
presence of spot market and contract. Atamtiirk and Hochbaum [2]
considered various versions of deterministic multi-period capacity
expansion problem when subcontracting is available. Oren et al. [9]
considered electric power capacity expansion with spot market
in a game-theoretical framework. Other works can be found
in [5-7] with applications in cellular manufacturing and flexible
manufacturing systems. All of these works assume deterministic
demand and cost.

In the following, we use a scenario tree with T periods to repre-
sent the realization of stochastic parameters (demand, cost, etc.),
as shown in Fig. 1. For each node n, a(n) is the immediate ances-
tor node, C(n) is the set of immediate descendants, and ¢, is the
period of node n. Let 7 be the whole scenario tree and N be the
total number of nodes in the scenario tree. 7 (n) denotes the sub-

tree with root node n and 7 (n) = 7 (n) \ {n}. £(n) denotes the
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unique path from node n to the root node of the scenario tree,

and £(n) = £(n) \ {n}. We also use the following notations in
the model:

Parameters:

ck Unit cost of permanent capacity for node n,
o Unit cost of contract capacity for node n,

c Unit cost of spot market capacity for node n,
Dn Probability of node n,

d, Demand of node n.

Decision variables:

Xn Permanent capacity acquisition in node n,
Yn Contract capacity acquisition in node n,

Zn Spot market capacity acquisition in node n.

We assume that we do not have any previously purchased or
contracted capacity. We also assume that all costs and demands
are positive and all costs are discounted to their present value.
Moreover, we assume that ¢/ and c; are very large values for
leaf nodes. With these assumptions, the stochastic single resource
capacity expansion problem can be formulated as:

Min an (cPxn + Coyn + C32)
neg

s.t. Z X+ Yamy +2n = dy VR ET, (1)
meP (n)
X, Y. Zn €ZY VYne T,

where the objective minimizes the expected total cost of all three
types of capacity acquisition over the scenario tree, and the first set
of constraints guarantee that for each node in the scenario tree, the
total capacity available at node n will satisfy the demand. Note that
we purchase the permanent capacity or sign the contract capacity
at the beginning of the period, before the realization of the random
demand in the same period. Thus, in model (1), we make perma-
nent or contract capacity available in the next period of when it
is purchased or signed. In other words, x,, will appear in 7 (n) and
yn will appear in C(n). We emphasize that our model can deal with
contracts with an arbitrary number of periods. For simplicity of ex-
position, we only use the one-period contract in model (1). Also,
it can be verified that a lot-sizing problem with spot market and
contract production availability can be transformed to an equiv-
alent model (1) in polynomial time. Model (1) has the following

property:

Theorem 1. If the demands are integer-valued, the LP relaxation of
model (1) will yield integral optimal solutions.

Proof. Suppose that A is the left hand side matrix of model (1).
Note that A is a 0-1 matrix and each row in A corresponds to a
node in the scenario tree. Consider the z, columns, there is a sin-
gle 1in each column and all other entries are zeroes. Consider the
Yn columns, the entry of row i and column j is 1 only if i € C(j).
Consider the x;, columns, the entry of row i and columnj is 1 only if
i € 7 (j). We can reorder the constraints according to the following
procedure: we start from the root node and after each insertion of
a node n, we immediately insert all nodes in C(n). If there is more
than one node in € (n), we will re-start the process from the first
inserted node. When there are no more nodes to insert, we con-
tinue the procedure from the last non-inserted node based on a
depth-first search method. This new ordering guarantees that in

S

T(n

Fig. 1. The scenario tree 7.

each column, the 1s appear consecutively. Therefore, A is an inter-
val matrix which is totally unimodular [13]. O

Based on Theorem 1, we can rewrite model (1) as follows:

Min ) (B + Coyn + €2n)
ney

s.t. Z Xm +ya(n) +z; = dn
mep (n)
Xn,Vn.Zn ERT VneT.

VneT, (2)

Note that for simplicity of exposition, we have removed the p,s in
the objective. In the following, all our algorithms are designed for
model (2).

2. Algorithms

2.1. Primal algorithm

In this subsection, we propose a primal algorithm for model
(2). The primal algorithm will check if it is more economical to shift
up capacity to an ancestor node, as either permanent capacity or
contract capacity, by comparing the costs of permanent capacity
or contract capacity in an ancestor node with the total cost of
permanent, contract, and spot market capacities in descendant
nodes.

For this algorithm, we assume that the nodes in the scenario
tree 7~ are indexed in increasing order of their time periods (called
the primal indexing system). The algorithm starts with an initial
feasible solution, where x; = y; = O0andz; = d, foralln € 7.
We also need the following definitions:

Al() ={m e T(n):xn >0, andx, = 0,Vk € P(m) \ P(n)}
A*() ={me T(n) :yn >0, andx, = 0,Vk € P(m) \ P(n)}
A(n)={meT(n):zy, >0, andx, =y, =0,
Vkepm)\Pm)}

An) = A () U A2(n) U A>(n)

An:Mm{ Min X, Min y;,, Min zm}
meAl(n) meA2(n) meA3(n)
A% = Min z,

meC(n)

zm>0

B! = Z &+ Z S + Z e, — ¢k

mesl(n) meA2(n) meA3(n)
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