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a b s t r a c t

Unconstrainedmulti-objective optimisation problemswith ppositively homogeneous objective functions
are considered. We prove that such problems reduce to multi-objective optimisation problems with
p− 1 objectives and a single equality constraint. Thus, problems with two objectives can be solved with
standard single objective optimisationmethods and, for problemswith p > 2 objectives, we can compute
infinitely many efficient solutions by solving a finite number of single objective problems. The proposed
procedure is applied on radiotherapy for cancer treatment.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Decision making under a set of conflicting objectives is a
common scenario in real life. Usually there exists a trade-off
between objectives such that an ideal solution, one in which all
objectives are optimised simultaneously, does not exist. Instead,
we seek a set of solutions in which no objective can be improved
without impairing at least one of the other objectives. These
solutions are known as efficient solutions. Therefore, solving an
optimisation problem considering multiple objectives requires
finding all efficient solutions or finding the entire set of non-
dominated points (the images of the efficient solutions) in outcome
space. In this paper, we adopt the latter interpretation. For a
comprehensive exposition of multi-objective optimisation, see [3].

During the last decades, substantial efforts have been made to
develop strategies to solvemulti-objective optimisation problems.
In this paper we address such problems in which all the objectives
are positively homogeneous (PH) functions, where a function f :
Rn
−→ R is positively homogeneous if f (λx) = λf (x) for all λ > 0

and all x ∈ Rn. For convenience we also assume that f (0) = 0.
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In this section we first define the problem that is addressed
in this paper, which we term the positively homogeneous multi-
objective optimisation problem (PHMOP). Then we reduce the
PHMOP with p objectives to a PHMOP with (p − 1) objective
functions. The special case when p = 2 is highlighted. Finally, we
present a procedure that allows us to solve the original p-objective
PHMOP by solving the reduced (p− 1)-objective PHMOP.

The PHMOP can be stated as follows:

PHMOP: minimise
x∈Rn

f (x),

where x ∈ Rn is a vector of n decision variables xi, i = 1, 2, . . . , n,
and f is a vector of p objective functions fk, k = 1, 2, . . . , p, each of
which is positively homogeneous. To ensure PHMOP is well posed,
we require that there is some x, k and l with fk(x) and fl(x) having
opposite signs.

Throughout the paperwewill use the following notation for the
comparison of vectors. Let y1, y2 ∈ Rp. We write y1 5 y2 if y1k 5 y2k
for all k = 1, . . . , p; y1 ≤ y2 if y1 5 y2 but y1 ≠ y2; and y1 < y2 if
y1k < y2k for all k = 1, . . . , p.We say that y1 ∈ Rp dominates y2 ∈ Rp

if y1 ≤ y2. A solution x̂ ∈ Rn is called an efficient solution of PHMOP
if there is no x ∈ Rn where f (x) dominates f (x̂). In this case f (x̂)
is called a non-dominatedpoint of PHMOP. We let XE denote the set
of all efficient solutions of PHMOP and denote the set of all non-
dominated points as YN := f (XE). Clearly for any efficient solution
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x̂ ∈ XE of PHMOP with f (x̂) ≠ 0 we must have fl(x̂) < 0 < fk(x̂)
for some k and l.

Proposition 1. If x̂ is an efficient solution of problem PHMOP, then
λx̂ is an efficient solution of PHMOP for all λ > 0.

Proof. Since f is a vector of positively homogeneous functions we
have f (λx̂) = λf (x̂) for all λ > 0. Now, suppose that there exists a
vector x ∈ Rn such that f (x) ≤ f (λx̂). Then

f

1
λ
x

=

1
λ
f (x) ≤

1
λ
f (λx̂) = f (x̂),

a contradiction. �

It follows from Proposition 1 that we can obtain an infinite
number of non-dominated points of PHMOP for each non-
dominated point found when solving a new problem in which one
objective has its value fixed. For ease of notation, we assume that
the p’th objective is fixed (with the objectives being renumbered,
if required), giving a new problem PHMOPp(t) with a constraint
fp(x) = t for some (feasible) t ∈ R in which we optimise over
the remaining p − 1 objective functions fk, k = 1, 2, . . . , p − 1.
By t being feasible we mean that there is some x ∈ Rn such that
fp(x) = t . To formally define PHMOPp(t) we denote its vector of
objective functions as f ′(x) = (f1(x), f2(x), . . . , fp−1(x)), giving:

PHMOPp(t) :
minimise

x∈Rn
f ′(x)

subject to fp(x) = t.

Each efficient solution x̂ of PHMOPp(t) defines a set of infinitely
many efficient solutions X = {λx̂ : λ > 0} ⊆ XE of PHMOP. We
consider the special case of p = 2 next.

Corollary 1. For p = 2 there exists ŷ1, ŷ2 ∈ R2 with ŷ11 > 0 and
ŷ21 < 0 such that YN ⊆ {0} ∪ {λŷ1 : λ > 0} ∪ {λŷ2 : λ > 0}.

Proof. If YN is empty or YN = {0}, then the result is true (for any
choice of ŷ1, ŷ2). If there is a non-dominated point ŷ ≠ 0 with
ŷ1 > 0 then let ŷ1 = ŷ; otherwise let ŷ1 = (1,−1). If there is
a non-dominated point ŷ with ŷ1 < 0 then let ŷ2 = ŷ; otherwise
let ŷ2 = (−1, 1). Now choose any element y ∈ YN with y ≠ 0. If
y1 > 0 then y must lie in {λŷ1 : λ > 0}. Otherwise it would either
dominate a point in {λŷ1 : λ > 0} contradicting Proposition 1, or
be dominated by a point in {λŷ1 : λ > 0}, contradicting y ∈ YN .
Similarly if y1 < 0 then y must lie in {λŷ2 : λ > 0}; otherwise it
would either dominate a point in {λŷ2 : λ > 0} or be dominated
by a point in {λŷ2 : λ > 0}. This proves the result. �

According to Corollary 1, the entire set of non-dominated points
of multi-objective optimisation problem PHMOP with p = 2 is de-
termined by optimal solutions of two single-objective optimisation
problems PHMOPp(t) with t = t1 < 0 and t = t2 > 0. To find ef-
ficient solutions for the constrained multi-objective optimisation
problem PHMOPp(t) in the case p > 2, we propose a procedure
based on thewell-known ε-constraintmethod [7]. Thismethod at-
tempts to find an efficient solution by minimising one of the orig-
inal objectives, while the remaining objectives are transformed to
constraints. This gives rise to single-objective constrained optimi-
sation problems of the form:

PHMOPp,j(t, ε) :
minimise

x∈Rn
fj(x)

subject to fp(x) = t
fk(x) 5 εk for k = 1, . . . , p− 1;

k ≠ j,

where j ∈ {1, 2, . . . , p−1}, and ε ∈ Rp−1 is a vector of p−1bounds.
Note that the j’th element of ε, εj, is not used by PHMOPp,j(t, ε),
but is assumed to exist as this simplifies the development of Algo-
rithm 1 presented below.

Proposition 2. Let f be a vector of positively homogeneous functions
fk, k = 1, . . . , p. If x̂ is an optimal solution of problem
PHMOPp,j(t, ε) then λx̂ with λ > 0 is an optimal solution of problem
PHMOPp,j(λt, λε).

Proof. Since f is a vector of positively homogeneous functions we
have fk(λx̂) = λfk(x̂) 5 λεk for all k = 1, . . . , p − 1, k ≠ j
and fp(λx̂) = λfp(x̂) = λt, so that λx̂ is feasible for problem
PHMOPp,j(λt, λε).

Now, suppose there exists x ∈ Rn that is feasible for PHMOPp,j
(λt, λε) such that

fj(x) < fj(λx̂)

for some j. Then x/λ is a feasible solution for problemPHMOPp,j(t, ε)
and

fj
 x

λ


<

1
λ
fj(λx̂) = fj(x̂).

Hence x̂ is not an optimal solution of PHMOPp,j(t, ε), a contradic-
tion. �

It is well known that any optimal solution x̂ of PHMOPp,j(t, ε)
is at least a weakly efficient solution of PHMOPp(t) (there is no x
such that f ′(x) < f ′(x̂)) and that if x̂ is a unique optimal solution
of PHMOPp,j(t, ε) then it is an efficient solution of PHMOPp(t).
Moreover, each efficient solution of PHMOPp(t) is also an optimal
solution of PHMOPp,j(t, ε) with appropriately chosen j and ε. For
more details on the ε-constraint method see, e.g. [3].

To identify efficient solutions of PHMOPp(t) we solve
PHMOPp,j(t, ε) for different j with a variety of vectors of bounds
ε ∈ Rp−1. To this end we first estimate the range [lk, uk] of val-
ues that objective fk takes over efficient solutions of PHMOPp(t).
The exact ranges of values are defined by the ideal point yIk :=
min{fk(x) : x ∈ Rn, fp(x) = t} and nadir point yNk := max{fk(x) :
x is an efficient solution of PHMOPp(t)}. So we set lk = yIk. Unfor-
tunately, yN is very difficult to compute and usually not available,
see e.g. [5], and so we suggest the following heuristic approach
based on lexicographic optimisation. Let Π denote the set of all
permutations of {1, . . . , p− 1}. For a specific permutation π ∈ Π

we denote its k’th element by π(k). Lexicographic optimisation
chooses a permutationπ of objectives and optimises them sequen-
tially. First fπ(1)(x) is optimised over x ∈ Rn subject to fp(x) = t .
Then, fπ(2)(x) is optimised over x ∈ Rn subject to fp(x) = t and
an equality constraint on the optimal value of fπ(1)(x). This process
continues until an optimal solution of fπ(p−1)(x) is obtained, giv-
ing a final solution we denote x̂π . It is clear that x̂π is an efficient
solution of PHMOPp(t). We then set

uk := max

fk(x̂π ) : π ∈ Π


. (1)

Clearly, uk 5 yNk . Moreover, for p = 2, uk = yNk (see e.g. [5]).
Having found [lj, uj] for each objective j ∈ {1, . . . , p − 1}, we

create a set of (typically equally spaced) points Xj = {x1j , x
2
j , . . . ,

x
|Xj|
j } over [lj, uj] for each j. For each objective j = 1, 2, . . . , p − 1,
we then form a grid of points over the other objectives, giving
Ej = X1 × X2 × · · · × Xj−1 × {∞} × Xj+1 × · · · × Xp−1, where
each ε ∈ E can serve as a vector of bounds in PHMOPp,j(t, ε).
(Note that εj is initially unused, but the εj = ∞ value will be
updated subsequently.) We then solve PHMOPp,j(t, ε) for each
ε ∈ Ej. As mentioned before, an optimal solution of this problem
could be weakly efficient rather than efficient. To ensure that an
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