
Operations Research Letters 42 (2014) 278–283

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Extended formulations for stochastic lot-sizing problems
Chaoyue Zhao, Yongpei Guan ∗

Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, United States

a r t i c l e i n f o

Article history:
Received 12 November 2013
Received in revised form
13 April 2014
Accepted 13 April 2014
Available online 19 April 2014

Keywords:
Stochastic programming
Lot-sizing
Integral solution

a b s t r a c t

In this paper, extended formulations for stochastic uncapacitated lot-sizing problems with and without
backlogging are developed in higher dimensional spaces that provide integral solutions. Moreover,
physical meanings of the decision variables in the extended formulations are explored and special cases
with more efficient formulations are studied.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The lot-sizing (LS) problem, determining when to produce and
how much to produce at each time period so as to minimize the
total production cost, is fundamental in production and inventory
management. Meanwhile, significant research results have been
derived for this problem and its deterministic variants, including
polynomial time algorithms [8,3,7], cutting planes describing the
convex hull in the original space [2], and extended formulations
for the problems with Wagner–Whitin costs [6].

Recently, with the consideration of cost and demand uncertain-
ties, aswell as dependency among different time periods, scenario-
tree based stochastic lot-sizing is introduced in [4]. Under this
setting, the uncertain problem parameters are assumed to follow a
discrete-time stochastic processwith finite probability space and a
scenario tree T = (V, E) is utilized to describe the resulting infor-
mation structure. Each node i ∈ V corresponds to a possible real-
ization of uncertain problem parameters up to the time period this
node belongs to.Wedenote the corresponding probability as pi. Ex-
cept the root node, i.e., node 1, each node i ∈ V has a unique parent
i−. In addition, we let C(i) represent the set of children of node i,
and V(i) represent the set of descendants of node i (including it-
self). Moreover, corresponding to each node i ∈ V , we let αi, hi, βi,
and di represent unit production cost, holding cost, fixed setup cost,
and demand respectively. All these parameters are assumed non-
negative with pi included. The corresponding stochastic uncapaci-
tated lot-sizing problem (SULS) can be formulated as follows:

min

i∈V

(αixi + βiyi + hisi)

∗ Corresponding author.
E-mail address: guan@ise.ufl.edu (Y. Guan).

s.t. si− + xi = di + si, (1)
xi ≤ Myi, (2)
xi ≥ 0, si ≥ 0, yi ∈ {0, 1}, ∀i ∈ V, (3)

where xi, yi, and si represent the production level, the setup de-
cision, and the inventory left at the end of the time period cor-
responding to the state defined by node i. Constraints (1) and (2)
indicate inventory balance and production capacity.

The extended formulation for SULS is first attempted in [1], in
which a reformulation is introduced to reduce the LP relaxation
gap. Later on, in [9], an extended formulation of SULS is provided
for a special case in which demands are deterministic (although
costs are uncertain) andWagner–Whitin costs are assumed. In this
paper, we derive extended formulations for general SULS problems
in which both demands and costs are uncertain.

2. Extended formulation for SULS

We first review the optimality conditions and the dynamic pro-
gramming algorithm for SULS (as described in [5]). Then, we derive
the corresponding dual formulation in the dual space. Finally, we
develop the extended formulation of SULS in a higher dimensional
space. Without loss of generality, we assume the initial inventory
level is zero. For notation brevity, we add a dummy node 0 which
is the parent of node 1 and define V̄ = V∪{0}. We let d1i represent
the cumulative demand from the root node 1 to node i and define
d10 = 0. Accordingly we have dik = d1k − d1i− for each k ∈ V(i).

Optimality conditions and dynamic programming for SULS: As shown
in [5], the key concept for the optimality conditions has two folds:
(1) for each node i ∈ V , if we choose to produce at this node, then
the production amount plus the entering inventory to this node
should be able to exactly cover the cumulative demand from node

http://dx.doi.org/10.1016/j.orl.2014.04.003
0167-6377/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2014.04.003
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2014.04.003&domain=pdf
mailto:guan@ise.ufl.edu
http://dx.doi.org/10.1016/j.orl.2014.04.003


C. Zhao, Y. Guan / Operations Research Letters 42 (2014) 278–283 279

i to a descendant of node i. That is, if (x∗, y∗, s∗) is the optimal
solution to SULS and meanwhile for each node i, if

x∗

i > 0, then x∗

i = dik − s∗i− for some node k ∈ V(i); (4)

(2) the inventory level entering a node has a limited number of
candidates based on (1). More specifically, the inventory level
under the optimality conditions can be described as follows:

s∗i = d1j − d1i for some node j ∈ V : d1j ≥ d1i. (5)
Based on the above two important insights for the problem,

the backward induction dynamic programming framework can be
explored based on if production setup is taken or not at a particular
node. Let K(i, j) represent the optimal value function for node i
when the inventory left from the previous period i− is d1j − d1i− .

If a production is set up at node i, the total costs in this node
contain the setup, production, and holding costs corresponding
to this node and the costs for descendant nodes. Therefore, the
corresponding value function, for which we denote it as KP(i, j), is
equal to

min
k∈V(i):d1k>d1j


βi + αi(d1k − d1j) + hi(d1k − d1i)

+


l∈C(i)

K(l, k)


. (6)

Otherwise, if no production occurs at this node, the total costs
for this node are the holding cost corresponding to this node, to-
gether with the costs for descendant nodes. Thus, the correspond-
ing value function, denoted as KNP(i, j), is

hi(d1j − d1i) +


l∈C(i)

K(l, j). (7)

Finally, if both options are available for node i, the actual value fun-
ction K(i, j) is the minimum of the two, i.e., K(i, j) = min{KP(i, j),
KNP(i, j)}. Meanwhile, for the special cases in which the produc-
tion is necessary at node i (i.e., d1j − d1i− < di) and no production
is needed at node i (i.e., d1j − d1i− ≥ maxl∈V(i) dil), K(i, j) is equal
to KP(i, j) and KNP(i, j) respectively.
Extended formulation of SULS:Now, we can formulate SULS as a lin-
ear program (denoted as SULS-L) incorporating dynamic program-
ming Bellman equations as constraints:

max K(1, 0)

s.t. K(1, 0) ≤ C10k +


l∈C(1)

K(l, k), ∀k ∈ V(1), (8)

K(i, j) ≤ Cijk +


l∈C(i)

K(l, k), ∀i ∈ V \ {1}, ∀j ∈ V,

and ∀k ∈ V(i) : d1k > d1j ≥ d1i− , (9)

K(i, j) ≤ Dij +

l∈C(i)

K(l, j),

∀i ∈ V \ {1}, ∀j ∈ V : d1j ≥ d1i, (10)

where the parameters

Cijk = βi + αi(d1k − d1j) + hi(d1k − d1i) and
Dik = hi(d1j − d1i).

In the above formulation, constraints (8) correspond to (6) for the
root node case and constraints (9) correspond to (6) for non-root
nodes. Constraints (10) correspond to (7). For notation brevity, we
define Ii = {0} if i = 1 and Ii = V otherwise, and VT(t) as the
node set that covers the nodes with the corresponding time peri-
ods larger than t . Moreover, we define two index sets:

Π = {(i, j, k)|i ∈ V, j ∈ Ii, k ∈ V(i) : d1k > d1j ≥ d1i−}

Γ = {(i, j)|i ∈ V, j ∈ Ii : d1j ≥ d1i}.

Note here thatΠ represents the set of all possible production com-
binations and Γ represents the set of all possible non-production
combinations. We can get the dual formulation (denoted as SULS-
D) of SULS-L as follows:

min
w,u


(i,j,k)∈Π

Cijkwijk +


(i,j)∈Γ

Dijuij (11)

s.t.


k∈V(1)

w10k = 1, (12)


k∈V(i)

wijk + uij − w10j = 0, ∀i ∈ C(1), ∀j ∈ V(1), (13)
k∈V(i)

wijk + uij −

l∈V

wi− lj − ui−j = 0,

∀i ∈ VT(2), ∀j ∈ V(i−), (14)
k∈V(i)

wijk + uij − ui−j = 0, ∀i ∈ VT(2), ∀j ∈ V \ V(i−), (15)

where wijk and uij are dual variables corresponding to constraints
(9) and (10) respectively.

In the remaining part of this paper, we demonstrate that the
above SULS-D can automatically generate integral solutions for
w and u. Furthermore, we provide physical implications of these
two introduced variables. We first need to prove the following
important lemma.

Lemma 1. The extreme points of SULS-D are binary.

Proof. To prove the proposition, it is equivalent to prove that for
∀Cijk ∈ (−∞, +∞) and ∀Dij ∈ (−∞, +∞), the optimal solutions
of SULS-D are binary. First, by solving SULS using the dynamic
programming approach with respect to C and D, we can obtain an
optimal decision and accordingly we can introduce ŵ and û, which
are binary, to represent the optimal decision. For a given optimal
decision, if the inventory level entering node i is equal to d1j − d1i−
and production amount at node i can exactly cover the cumulative
demand from node i to its descendant node k, we let ŵijk = 1.
Otherwise, ŵijk = 0. Similarly, if the inventory level entering node
i is d1j − d1i− and no production occurs at node i, we let ûij = 1.
Otherwise, ûij = 0. In the following, we prove that this generated
(ŵ, û) is an optimal solution to the dual formulation SULS-D,which
is sufficient to prove our claim.

We first verify that ŵ and û are feasible solutions to SULS-D, i.e.,
ŵ and û satisfy constraints (12) to (15). For constraint (12), since
the inventory level entering node 1 is 0, production has been set
up in node 1 to cover the cumulative demand from node 1 to one
of its descendant nodes. Constraint (13) indicates the optimality
conditions applied to the children nodes of root node 1. For any pair
i ∈ C(1), j ∈ V(1), if ŵ10j = 1, which indicates that the production
amount at node 1 exactly covers the cumulative demand fromnode
1 to node j. Then, for node i, we can choose to produce to cover the
cumulative demand from node i to some descendant node of node
i or no production. That is,


k∈V(i) ŵijk + ûij = 1. Otherwise, if

ŵ10j = 0, then the inventory level entering node i is not equal to
d1j − d1, we have


k∈V(i) ŵijk + ûij = 0, based on the definitions of

ŵijk and ûij. Similar arguments can be applied for constraints (14)
and (15), depending on whether j ∈ V(i−) or not. If j ∈ V(i−),
i.e., corresponding to constraint (14), then it is possible to set up at
node i− and cover the cumulative demand from node i− to node j,
based on the optimality condition described in (4). Therefore, there
are two possible ways to make the inventory level entering node i
to be d1j − d1i− : (1) production is set up at node i− and cover the
cumulative demand from node i− to node j, or (2) no production
is set up at node i− and the entering inventory for node i− covers
the demand until node j. This indicates the equivalence between



Download	English	Version:

https://daneshyari.com/en/article/10523922

Download	Persian	Version:

https://daneshyari.com/article/10523922

Daneshyari.com

https://daneshyari.com/en/article/10523922
https://daneshyari.com/article/10523922
https://daneshyari.com/

