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Stochastic failure models for systems under randomly variable environment (dynamic environment) are
often described using hazard rate process. In this paper, we consider hazard rate processes induced by
external shocks affecting a system that follow the nonhomogeneous Poisson process. The sample paths
of these processes monotonically increase. However, the failure rate of a system can have completely
different shapes and follow, e.g., the upside-down bathtub pattern. We describe and study various
‘conditional properties’ of the models that help to analyze and interpret the shape of the failure rate and
other relevant characteristics.
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1. Introduction

Many of the currently used failure models have been devel-
oped on the premise that the operating environment is static. How-
ever, devices often work in varying environments and, therefore,
their performance can be significantly affected by varying environ-
mental conditions. Stochastic failure models that include a time-
varying environment can generally be classified into two broad
categories. The first category usually employs ‘hazard rate pro-
cesses’ (Aven and Jensen [4,5]) as a method of describing environ-
mental stochasticity. Some initial explicit results can be found in
Gaver [16], Arjas [3], Kebir [19], Gamerman [15] and Lemoine and
Wenocur [26]. Later on, Banjevic et al. [7] assumed that the en-
vironment covariate is driven by a Markov process and used an
approximation scheme to estimate the corresponding failure time
distribution. Some computational issues for calculating the relia-
bility function for such systems were addressed by Banjevic and
Jardine [6]. More recently, flexible proportional hazard type model
has been widely used to relate the hazard rate function of a com-
ponent’s lifetime to environmental conditions (see, e.g., Banjevic
et al. [7], Jardine et al. [17], Lee and Whitmore [24] and Liao and
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Tseng [28]). Zhao et al. [31] in this way discussed condition-based
inspection policies for systems subject to random shocks.

On the other hand, the second category includes a class of
stochastic models that describe degradation of systems directly
using different stochastic processes such as Brownian motion
or general diffusions, Lévy processes, Markov renewal models
and random coefficient models. Doksum and Heyland [12] used
Brownian motion with a stress-dependent drift parameter to
derive the failure time distribution. Kharoufeh [20] and Kharoufeh
and Cox [21] examined a model for a system degrading linearly at a
rate that depends on the state of a continuous-time Markov chain.
In Kharoufeh and Mixon [23], a model with Markov-modulated
degradation rates and Poisson shock intensities was studied. See
also Liao and Tseng [28], Kharoufeh et al. [22], Anderson [2], Li and
Anderson [27] for related models.

In this paper, we follow the ‘hazard rate process approach’,
which, in our opinion, has not been sufficiently investigated. Thus,
we will consider the failure rate as a specific increasing stochastic
process {r;, t > 0} and, in this way, describe stochastic aging in an
‘aggregated form’.

Now we are ready to describe the specific setting of our interest.
Assume that a system, whose lifetime is denoted by T, is operating
in a random environment described by a certain (covariate)
stochastic process {Z(t), t > 0}. For example, the stochastic
process {Z(t), t > 0} can represent the randomly changing
time-dependent external temperature, electric or mechanical load,
or some other randomly changing external stress, etc. Then, the
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conditional failure rate can formally be defined (see Kalbfleisch and
Prentice [18], Aalen et al. [1]) as
rtlzw),0<u=<t)
I PEt<T<t+At|Zw)=2zuw), 0<u<t, T>t)
= lim .
At—0 At

Note that this conditional failure rate is specified for a realization
of the covariate process. With the covariate process not fixed yet,
as discussed above, it is obviously the hazard rate process. Under
certain non-restrictive and technical assumptions on this process,
the following exponential representation for its realizations exists
(see Lehmann [25] for details):

PT>t|Z(uw)=zw),0<u<t)

t
:exp{—/ r(s | z(u), Ofufs)ds}. (1)
0

We will now describe the lifetime distribution of our system.
In our model, the random external environment is modeled by the
external shock process {N(t), t > 0}, where N(t) represents the
total number of shocks by time t, and the related marked process.
We will assume that the external shock process {N(t), t > 0}
is the nonhomogeneous Poisson process with intensity function
A(t). Also, denote by T; < T, < --- the sequential arrival times
of external shocks. Let ¥, ¥,, ... be ii.d. random sequence of
continuous random variables, having common Cdf G(t). Assume
that the conditional failure rate function of T for our system
is Eq. (2) (given in Box I), where ry(t) is the ‘baseline failure
rate’ which defines the lifetime distribution under the laboratory
environment, i.e.,, when there is no external shock process. From
(2) the effect of external shocks on the lifetime of T can be read
as follows: ‘on ith shock, the failure rate of T is increased by ;'
(See also Nakagawa [29], Cha and Lee [10], Cha and Mi [11], Cha
and Finkelstein [8,9] and Finkelstein and Cha [14] for various shock
models.)

The description of stochastic failure model based on the condi-
tional failure rate (2) will allow some meaningful interpretations of
the behavior of the ‘unconditional’ failure rate of the system, which
can be of a major interest. As mentioned before, with the exter-
nal shock process not fixed yet, the conditional failure rate (2) is a
stochastic process, {r;, t > 0}, of the form:

r=rt|Nw, 0<u<t¥ i=1,2,...,N(t))
N(E)

ro(t) + Y Wi (3)
i=1

Each realization of r; in (3) is an ‘ordinary failure rate’, obviously
conditioned on survival event T > t. However, random quantities
in (3),i.e.,, N(u) and ¥;, are not conditioned on survival, and there-
fore cannot objectively describe ‘dynamics’ for the corresponding
realizations. Therefore, in principle, the corresponding conditional
process should be better called the ‘hazard rate process’. However,
in line with the existent terminology, we will retain this term for
{r¢, t > 0}, whereas {(r; | T > t), t > 0} will be referred to as the
‘conditional hazard rate process’.

A similar setting is defined by the following additive fixed
frailty model that describes heterogeneous population consisting
of homogeneous subpopulations ordered in the sense of the hazard
rate ordering:

rt|Z=2z)=ro(t) +z,

where Z > 0is the frailty parameter with the pdf 7 (z). In this case,
as the weakest subpopulations are dying out first, the composition
of the population (dynamics) changes with time and is described
by the corresponding conditional distribution (Z | T > t) for
each t (Finkelstein [13]), which is the simpler analogue of our

{(ry | T > t), t > 0}.Inour case, there is no ordering of the sample
paths of the hazard rate process, however, the most ‘vulnerable’
realizations are still ‘dying out first’ thus defining the composition
of survivors as the function of time.

In order to describe the corresponding distribution for survivors
for model (3) and to obtain the unconditional (ordinary) failure
rate for a system operating in a random environment of the
described type, we must consider the conditional joint distribution
of (N(t),¥;, i=1,...,N(t) | T > t).

2. The conditional distribution of (N(t), ¥;, i=1,...,N(t) |
T > t) and the failure rate function

In accordance with model (3), the unconditional failure rate of
the system, which is denoted by r(t), can be derived as Eq. (4)
(given in Box II), where En) w;, i=1,2,... N(t)|T>¢ Stands for the expec-
tation with respect to the conditional distribution of (N(t), ¥;, i =

1,2,...,N(t) | T > t). As the unconditional failure rate in

(4) contains the conditional expectation E [Zf’:(? | T > t], itis

necessary to derive the conditional distribution of (N(t), ¥;, i =
1,2,...,N(t) | T > t) and to investigate its behavior in order to
interpret the shape of the unconditional failure rate function r(t).

Theorem 1. Let My (t) be the mgf of W, The conditional joint
distribution of (¥1, ¥, ..., YN, N(t) | T > t) is given by

for v, NoOT= (X1, X2y oo X, )

:(1—[ Jo &P {=xi(t = v)} g2 (v)dv )

ie1 Jo /o~ exp {—=x(t — v)} g(x)dxA(v)dv

(/s Mo (¢ — v)r)dv)’

n!
t
X exp {—/ My (—(t — v))k(v)dv} ,
0

x>0,i=1,2,...,n,n=0,1,2,....

X

Proof. Note that the history of the shock process {N(u), 0 < u <
t} can completely be specified by {Tq, T, ..., Tn(), N(t)}. Then,
according to the relationship between the conditional failure rate
and the conditional survival function stated in Eq. (1), in our model,

P(T >t | T],Tz, ...,TN(t),N(t); lpi, i= ],2, ,N(t))
t t N
= exp —/ ro(u)du ; exp —f lef,-du
0 0 =1
t N(®)
= exp —/ ro(u)du ; exp 4 — Z vi(t —T))
0 i=1
t N(t)
—exp |~ [ @ [ Jexp v - T} )
0 i=1

For a more convenient mathematical handling of our model, the
conditional survival function in (5) can be equivalently stated in
terms of ‘randomized set of random variables’, which will allow us
to conveniently handle independent random variables:

P(T >t |V, Voo, Unwy, N(t); W1, i =1,2,...,N(t))
t N(t)
=exp{—/ m(u)du}]‘[exp{—w,-(r—vi)}, (6)
0 i=1
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